原题如下:用1、2、2、3、4、5这六个数字,用java写一个main函数,打印出所有不同的排列,如:512234、412345等,要求:"4"不能在第三位,"3"与"5"不能相连.
我看了回贴都没有很好解决,主要是没有排除重复。
解决思路:强化题目,用1、2、2、3、4、5这六个数字排列“递增”序列。其他要求不变。
算法思路:显然是递归,初始序列122345,先从末两位(45)变化(45,54),然后末三位(345) ... 直到最后六位.怎样解决重复问题?很简单,由于是递增序列,每生成新序列可与前一生成序列比较,如<放弃当前序列。当然有更好效率,如预先预测。代码如下:
class test
{
// 当前固定部分
private String CurFixPart;
private String PreGenNum;
public static void main(String[] args)
{
test t=new test();
t.GenControll("122345");
}
// 调整字符串s位置pos字符到最前
private String shift(String s, int pos)
{
String newStr;
if (s.length()>pos+1)
newStr=s.substring(pos, pos+1)
+s.substring(0, pos)
+s.substring(pos+1);
else
newStr=s.substring(pos)
+s.substring(0, pos);
return newStr;
}
protected int Validate(String newNum)
{
String newGenNum=CurFixPart+newNum;
if (Integer.valueOf(newGenNum)<=Integer.valueOf(PreGenNum))
return 0;
if (newGenNum.substring(2,3).equals("4") ||
(newGenNum.indexOf("35")!=-1) || (newGenNum.indexOf("53")!=-1))
return 0;
PreGenNum=newGenNum;
System.out.println(newGenNum);
return 0;
}
public void GenControll(String Base)
{
PreGenNum="0";
CurFixPart="";
GenNext(Base, 0);
}
void GenNext(String varPart, int curPos)
{
if (varPart.length()==2)
{
Validate(varPart);
Validate(shift(varPart, 1));
return;
}
// Next Layer
String newGen=shift(varPart, curPos);
String SavedFixPart=CurFixPart;
CurFixPart=CurFixPart+newGen.substring(0,1);
GenNext(newGen.substring(1), 0);
CurFixPart=SavedFixPart;
// 同层递增
if (curPos==varPart.length()-1)
return;
GenNext(varPart, curPos+1);
}
}
序列122345测试通过。
有什么意见请大家多多提点。
1 把问题归结为图结构的遍历问题。实际上6个数字就是六个结点,把六个结点连接成无向连通图,对于每一个结点求这个图形的遍历路径,所有结点的遍历路径就是最后对这6个数字的排列组合结果集。
2 显然这个结果集还未达到题目的要求。从以下几个方面考虑:
1. 3,5不能相连:实际要求这个连通图的结点3,5之间不能连通, 可在构造图结构时就满足改条件,然后再遍历图。
2. 不能有重复: 考虑到有两个2,明显会存在重复结果,可以把结果集放在TreeSet中过滤重复结果
3. 4不能在第三位: 仍旧在结果集中去除满足此条件的结果。
采用二维数组定义图结构,最后的代码是:
import java.util.Iterator;
import java.util.TreeSet;
public class TestQuestion {
private String[] b = new String[]{"1", "2", "2", "3", "4", "5"};
private int n = b.length;
private boolean[] visited = new boolean[n];
private int[][] a = new int[n][n];
private String result = "";
private TreeSet set = new TreeSet();
public static void main(String[] args) {
new TestQuestion().start();
}
private void start() {
// Initial the map a[][]
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i == j) {
a[i][j] = 0;
} else {
a[i][j] = 1;
}
}
}
// 3 and 5 can not be the neighbor.
a[3][5] = 0;
a[5][3] = 0;
// Begin to depth search.
for (int i = 0; i < n; i++) {
this.depthFirstSearch(i);
}
// Print result treeset.
Iterator it = set.iterator();
while (it.hasNext()) {
String string = (String) it.next();
// "4" can not be the third position.
if (string.indexOf("4") != 2) {
System.out.println(string);
}
}
}
private void depthFirstSearch(int startIndex) {
visited[startIndex] = true;
result = result + b[startIndex];
if (result.length() == n) {
// Filt the duplicate value.
set.add(result);
}
for(int j = 0; j < n; j++) {
if (a[startIndex][j] == 1 && visited[j] == false) {
depthFirstSearch(j);
} else {
continue;
}
}
// restore the result value and visited value after listing a node.
result = result.substring(0, result.length() -1);
visited[startIndex] = false;
}
}
3,5不能相连:实际要求这个连通图的结点3,5之间不能连通, 可在构造图结构时就满足改条件,然后再遍历图。
代码中请注意这几行:
// 3 and 5 can not be the neighbor.
a[3][5] = 0;
a[5][3] = 0;
只要这样定义图,根本不用在代码中写IF ELSE语句。
实际上基于图的算法好处在于,只要你能定义好满足题目要求的图结构,遍历的结果就是你要的结果,不用任何对遍历结果做任何处理。包括本题中的:4不能在第三位置,3,5不能相连,唯一
性要求,其实都可以在体现在构造的图形结构里,然后直接遍历图取得自己要的结果。而不用再次处理结果集。
只是说这里实际上对其它要求要体现在图结构里有困难(理论上是可以的),但起码3,5不能相接是很好构造的,就是上面的代码段来解释的。
关于图形数据结构建议先看看数据结构的书,主要是将如何利用二维数组描述图结构,再看看图的深度遍历实现原理。最后再应用到这个问题上来,自然就不难明白了。
转自http://www.1to2.us/java-a169514.htm
我看了回贴都没有很好解决,主要是没有排除重复。
解决思路:强化题目,用1、2、2、3、4、5这六个数字排列“递增”序列。其他要求不变。
算法思路:显然是递归,初始序列122345,先从末两位(45)变化(45,54),然后末三位(345) ... 直到最后六位.怎样解决重复问题?很简单,由于是递增序列,每生成新序列可与前一生成序列比较,如<放弃当前序列。当然有更好效率,如预先预测。代码如下:
class test
{
// 当前固定部分
private String CurFixPart;
private String PreGenNum;
public static void main(String[] args)
{
test t=new test();
t.GenControll("122345");
}
// 调整字符串s位置pos字符到最前
private String shift(String s, int pos)
{
String newStr;
if (s.length()>pos+1)
newStr=s.substring(pos, pos+1)
+s.substring(0, pos)
+s.substring(pos+1);
else
newStr=s.substring(pos)
+s.substring(0, pos);
return newStr;
}
protected int Validate(String newNum)
{
String newGenNum=CurFixPart+newNum;
if (Integer.valueOf(newGenNum)<=Integer.valueOf(PreGenNum))
return 0;
if (newGenNum.substring(2,3).equals("4") ||
(newGenNum.indexOf("35")!=-1) || (newGenNum.indexOf("53")!=-1))
return 0;
PreGenNum=newGenNum;
System.out.println(newGenNum);
return 0;
}
public void GenControll(String Base)
{
PreGenNum="0";
CurFixPart="";
GenNext(Base, 0);
}
void GenNext(String varPart, int curPos)
{
if (varPart.length()==2)
{
Validate(varPart);
Validate(shift(varPart, 1));
return;
}
// Next Layer
String newGen=shift(varPart, curPos);
String SavedFixPart=CurFixPart;
CurFixPart=CurFixPart+newGen.substring(0,1);
GenNext(newGen.substring(1), 0);
CurFixPart=SavedFixPart;
// 同层递增
if (curPos==varPart.length()-1)
return;
GenNext(varPart, curPos+1);
}
}
序列122345测试通过。
有什么意见请大家多多提点。
1 把问题归结为图结构的遍历问题。实际上6个数字就是六个结点,把六个结点连接成无向连通图,对于每一个结点求这个图形的遍历路径,所有结点的遍历路径就是最后对这6个数字的排列组合结果集。
2 显然这个结果集还未达到题目的要求。从以下几个方面考虑:
1. 3,5不能相连:实际要求这个连通图的结点3,5之间不能连通, 可在构造图结构时就满足改条件,然后再遍历图。
2. 不能有重复: 考虑到有两个2,明显会存在重复结果,可以把结果集放在TreeSet中过滤重复结果
3. 4不能在第三位: 仍旧在结果集中去除满足此条件的结果。
采用二维数组定义图结构,最后的代码是:
import java.util.Iterator;
import java.util.TreeSet;
public class TestQuestion {
private String[] b = new String[]{"1", "2", "2", "3", "4", "5"};
private int n = b.length;
private boolean[] visited = new boolean[n];
private int[][] a = new int[n][n];
private String result = "";
private TreeSet set = new TreeSet();
public static void main(String[] args) {
new TestQuestion().start();
}
private void start() {
// Initial the map a[][]
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i == j) {
a[i][j] = 0;
} else {
a[i][j] = 1;
}
}
}
// 3 and 5 can not be the neighbor.
a[3][5] = 0;
a[5][3] = 0;
// Begin to depth search.
for (int i = 0; i < n; i++) {
this.depthFirstSearch(i);
}
// Print result treeset.
Iterator it = set.iterator();
while (it.hasNext()) {
String string = (String) it.next();
// "4" can not be the third position.
if (string.indexOf("4") != 2) {
System.out.println(string);
}
}
}
private void depthFirstSearch(int startIndex) {
visited[startIndex] = true;
result = result + b[startIndex];
if (result.length() == n) {
// Filt the duplicate value.
set.add(result);
}
for(int j = 0; j < n; j++) {
if (a[startIndex][j] == 1 && visited[j] == false) {
depthFirstSearch(j);
} else {
continue;
}
}
// restore the result value and visited value after listing a node.
result = result.substring(0, result.length() -1);
visited[startIndex] = false;
}
}
3,5不能相连:实际要求这个连通图的结点3,5之间不能连通, 可在构造图结构时就满足改条件,然后再遍历图。
代码中请注意这几行:
// 3 and 5 can not be the neighbor.
a[3][5] = 0;
a[5][3] = 0;
只要这样定义图,根本不用在代码中写IF ELSE语句。
实际上基于图的算法好处在于,只要你能定义好满足题目要求的图结构,遍历的结果就是你要的结果,不用任何对遍历结果做任何处理。包括本题中的:4不能在第三位置,3,5不能相连,唯一
性要求,其实都可以在体现在构造的图形结构里,然后直接遍历图取得自己要的结果。而不用再次处理结果集。
只是说这里实际上对其它要求要体现在图结构里有困难(理论上是可以的),但起码3,5不能相接是很好构造的,就是上面的代码段来解释的。
关于图形数据结构建议先看看数据结构的书,主要是将如何利用二维数组描述图结构,再看看图的深度遍历实现原理。最后再应用到这个问题上来,自然就不难明白了。
转自http://www.1to2.us/java-a169514.htm