mapreduce on yarn的工作流程

[img]http://dl2.iteye.com/upload/attachment/0117/7347/350b0c0e-f646-3838-aadb-34290f505223.png[/img]

[size=medium]  当client提交一个任务后,首先resourceManger(RM)来调度出一个container,这个container是在nodeManger(NM)运作的,

 client直接和这个container所在的NM进行通信,在这个container中启动applicationMaster(AM),启动成功之后,这个AM将全权负责此次任务的进度,失败原因(在一次job中只有一个AM).

 AM会计算此次任务所需的资源,然后向RM申请资源,得到一组供map/reduce task运行的container,然后协同NM一起对每个container执行一些必要的任务,在任务执行

 过程中,AM会一直监视着任务的运行进度,若中间某个NM上的container中的任务失败,那么AM会重新找一台节点来运行此任务.



流程如下:

MRv2运行流程:

MR JobClient向resourceManager(RM)提交一个job

RM向Scheduler请求一个供MR AM运行的container,然后启动它

MR AM启动起来后向RM注册

MR JobClient向RM获取到MR AM相关的信息,然后直接与MR AM进行通信

MR AM计算splits并为所有的map构造资源请求

MR AM做一些必要的MR OutputCommitter的准备工作

MR AM向RM(Scheduler)发起资源请求,得到一组供map/reduce task运行的container,然后与NM一起对每一个container执行一些必要的任务,包括资源本地化等

MR AM 监视运行着的task 直到完成,当task失败时,申请新的container运行失败的task

当每个map/reduce task完成后,MR AM运行MR OutputCommitter的cleanup 代码,也就是进行一些收尾工作

当所有的map/reduce完成后,MR AM运行OutputCommitter的必要的job commit或者abort APIs

MR AM退出。[/size]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值