5个星期五,5个星期六,5个星期日

收到一封邮件,内容如下

2010年的10月份是个不寻常的月份,这个月份中有5个星期五,5个星期六,5个星期日,这种情况需要823年后才能再次出现,这种月份被认为是钱币之月,如果把这个消息发送给包括 在内的8位 朋友,4天以后就会有钱币上的收获,这是风水学上的理论,如果不 发送将会丢失成功的机会

 

其实,有 5个星期五, 5个星期六, 5个星期日的月份很多,只要满足“该月第一天为星期五,且该月共 31天”这个条件即可(因为前三天已经有了一个星期五,一个星期六,一个星期日,剩下的四个星期五,六,日被平均分配到剩下的 31-3=28天(正好 4周)内)

 

仅仅就新世纪的前二十年内而言,这样的月份都很多:

2002/3/1

2002/11/1

...

2019/11/1

2020/5/1

 

可以用以下 7 Groovy代码跑出来上述结果

 

(2000..2020).each{y->
	(1..12).each{m->
		def d = Date.parse('yyyy/M/d', "$y/$m/1")
		if(5 == d.day && m ==~ /1|3|5|7|8|10|11/)
			println "$y/$m/1"
	}
}

  

至于“ 823年后才能再次出现”一说,纯属瞎掰(不过 823年后的 2833年,确实存在这么一天,就是 2833/7/1

把上述代码的第一行中的 2000..2020替换为 2010..2833,可得如下结果( 2010 2833 823年中,有很多很多这样的月份。。。)

 

2010/1/1

2010/10/1

2832/10/1

2833/7/1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值