收到一封邮件,内容如下
2010年的10月份是个不寻常的月份,这个月份中有5个星期五,5个星期六,5个星期日,这种情况需要823年后才能再次出现,这种月份被认为是钱币之月,如果把这个消息发送给包括 在内的8位 朋友,4天以后就会有钱币上的收获,这是风水学上的理论,如果不 发送将会丢失成功的机会
其实,有 5个星期五, 5个星期六, 5个星期日的月份很多,只要满足“该月第一天为星期五,且该月共 31天”这个条件即可(因为前三天已经有了一个星期五,一个星期六,一个星期日,剩下的四个星期五,六,日被平均分配到剩下的 31-3=28天(正好 4周)内)
仅仅就新世纪的前二十年内而言,这样的月份都很多:
2002/3/1
2002/11/1
...
2019/11/1
2020/5/1
可以用以下 7行 Groovy代码跑出来上述结果
(2000..2020).each{y-> (1..12).each{m-> def d = Date.parse('yyyy/M/d', "$y/$m/1") if(5 == d.day && m ==~ /1|3|5|7|8|10|11/) println "$y/$m/1" } }
至于“ 823年后才能再次出现”一说,纯属瞎掰(不过 823年后的 2833年,确实存在这么一天,就是 2833/7/1)
把上述代码的第一行中的 2000..2020替换为 2010..2833,可得如下结果( 2010到 2833这 823年中,有很多很多这样的月份。。。)
2010/1/1
2010/10/1
…
2832/10/1
2833/7/1