一个图是否存在环

问题描述:给一个图G=<V,E>,问如何判断这个图中是否存在回路?请给出至少3种方法

分析:

方法1:利用减枝的方法,

      如果G为有向图:

       1)首先删除入读为0的点,并且将对应的和该点相连的点的入读-1。(可以用一个数组表示节点被删除的状态)

       2)重复过程1),直到没有入读为0的点,如果还有没被删除的节点,则该有向图一定存在回路

      如果G为无向图:

       1)首先删除所有度数<=1的点,然后将与这些点相连的所有点的度数-1,然后将所有度数为1的点加入队列中

       2)对队列中的每个点,重复过程1),如果还有没被删除的节点,那么证明该图一定存在回路。

方法2:有向图)利用拓扑排序

      1)首先利用DFS[深度优先搜索算法]进行拓扑排序,最后生成一个拓扑序链表,然后为每个节点设置一个是否被访问过标记,用Visit数组

      2) 遍历这个链表,对每个节点v,设置visit[v]=1,如果判断如果存在与该节点相邻的节点u,使得Visit[u]=1,那么证明存在回边,这图中一定存在圈。

public class DirectedDepthFirstTopoWithCircleDetection  
{  
    private boolean[] visited;  
    // 用于记录dfs方法的调用栈,用于环路检测  
    private boolean[] onStack;  
    // 用于当环路存在时构造之  
    private int[] edgeTo;  
    private Stack<Integer> reversePost;  
    private Stack<Integer> cycle;  
  
    /** 
     * Topological Sorting Constructor 
     */  
    public DirectedDepthFirstTopoWithCircleDetection(Digraph di)  
    {  
        this.visited = new boolean[di.getV()];  
        this.onStack = new boolean[di.getV()];  
        this.edgeTo = new int[di.getV()];  
        this.reversePost = new Stack<Integer>();  
  
        for (int i = 0; i < di.getV(); i++)  
        {  
            if (!visited[i])  
            {  
                dfs(di, i);  
            }  
        }  
    }  
  
    private void dfs(Digraph di, int v)  
    {  
        visited[v] = true;  
        // 在调用dfs方法时,将当前顶点记录到调用栈中  
        onStack[v] = true;  
  
        for (int w : di.adj(v))  
        {  
            if(hasCycle())  
            {  
                return;  
            }  
            if (!visited[w])  
            {  
                edgeTo[w] = v;  
                dfs(di, w);  
            }  
            else if(onStack[w])  
            {  
                // 当w已经被访问,同时w也存在于调用栈中时,即存在环路  
                cycle = new Stack<Integer>();  
                cycle.push(w);  
                for(int start = v; start != w; start = edgeTo[start])  
                {  
                    cycle.push(v);  
                }  
                cycle.push(w);  
            }  
        }  
  
        // 在即将退出dfs方法时,将顶点添加到拓扑排序结果集中,同时从调用栈中退出  
        reversePost.push(v);  
        onStack[v] = false;  
    }  
  
    private boolean hasCycle()   
    {  
        return (null != cycle);  
    }  
      
    public Iterable<Integer> getReversePost()  
    {  
        if(!hasCycle())  
        {  
            return reversePost;  
        }  
        else   
        {  
            throw new IllegalArgumentException("Has Cycle: " + getCycle());  
        }  
    }  
      
    public Iterable<Integer> getCycle()   
    {  
        return cycle;  
    }  
}

 

 

方法3:无向图而言)利用BFS[广度优先搜索](利用算法导论上BFS的版本,每个节点有一个color属性,标记节点的颜色:“白”、“灰”、“黑”)

      1)直接利用BFS进行遍历,在判断当前节点的相邻的节点时,附加一个判断:如果这个节点的颜色为“灰色”,则return false,即存在环。

      2)遍历完所有的节点,返回true。

广度优先搜索算法示例,找V0到V6的最短路径:

 

 

方法4:无向图而言)还是利用BFS,在遍历过程中,为每个节点标记一个深度deep[],如果存在某个节点为v,除了其父节点u外,还存在与v相邻的节点w使得deep[v]<=deep[w]的,那么该图一定存在回路。

 

方法5:无向图而言)用BFS或DFS遍历,最后判断对于每一个连通分量当中,如果边数m>=节点个数n,那么改图一定存在回路。因此在DFS或BFS中,我们可以统计每一个连通分量的顶点数目n和边数m,如果m>=n则return false;直到访问完所有的节点,return true.

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值