Flash Lite 与 J2ME 分析比较

作者:蓝色理想-jinni

原文链接:http://www.flashfuture.net/blog/blogview.asp?logID=12

随着Macromedia在FlashLite方面的大力推广,这支Mobile新军看来终于要展露头角了。不可避免的,众多的开发者会将它与现有的技术放在一起品评比较一番,而这次被推上擂台的,是已经在移动开发领域有着坚实基础的J2ME。技术的比较有的时候很盲目,大家唇枪舌剑、旁证博引了半天,却发现两种技术根本就没有可比性。而那些狂热的拥护者则往往要追求一个“A最终会代替B”的极端。

那么,J2ME和FlashLite到底有没有可比性?而FlashLite的是否会代替J2ME原有地位而成为移动应用开发的首选。

我的观点是:J2ME和FlashLite在某些领域存在交集,因此如果FlashLite可以被广泛支持,确实给了开发者相对于J2ME而言更好的选择。但在大部分时候,它们适用于不同需求,因而不存在FlashLite代替J2ME的可能。

首先来说说J2ME和FlashLite的“交集”在哪?FlashLite/J2ME让我们可以充分的利用移动设备的计算能力,而无需借助网络和服务器,即便需要连接网络,我们也可以将大量的工作交由客户端完成,从而减低服务器的压力和网络带宽的耗费,这是与WAP的技术最大的区别,也是优势所在。因此,从理论上讲,J2ME和FlashLite都可以用于在移动设备上实现商务、娱乐、管理等功能。

但是,FlashLite和J2ME两者都具备自身的优势和劣势,这种优势和劣势也导致了两者必将在不同的领域发挥作用。http://www.design-nation.net/en/archives/000453.php这篇文章中谈到的几点我不再赘述,以下是我对二者区别的补充:

1.FlashLite拥有统一的规范,即FlashLitePlayer,任何安装了FlashLitePlayer的设备都可以播放FlashLite文件而不需要加以编译修改。J2ME尽管在基础规范(MIDP/CLDC)上相对统一,但是大量的可选包使得程序的兼容性下降。更何况各个厂商的KVM实现还有众多Bug。

2.FlashLite无疑会提供更好的用户体验,摆脱了MIDPlcdui甚至是手机底层的MMI实现,开发者可以自由的设计应用程序的界面,同时也避免了使用API的困扰。相对而言,MIDP的UI框架过于丑陋,而且功能简单。(我现在正在试图解决这一问题)。当然,绘制复杂美观的界面也会带来资源和性能的耗费,因此开发者需要在两者之间寻找平衡点。

3.FlashLite支持SVG,同时本身也是矢量格式,因而在分辨率多样化的移动平台上可以更好的施展拳脚。J2ME开发者则需要认为解决分辨率适应的问题。在某些状况下,为了适应分辨率而带来的工作可能非常繁复。而且使用J2ME制作MTV类动画几乎不可能,逐桢绘图方式在J2ME上不可能毫无顾虑的使用。

4.FlashCast??现有资料太少,不知道他究竟能发挥多大的威力,但无论如何是值得期待的。相反,Sun并没有推出与J2ME完美整合的服务器技术,但事实上,J2ME可以和任何一种服务器技术整合。

(中场休息~__~)

5.FlashLite从现在看来,功能还过于单薄。J2ME则由JCP推动其发展,新规范曾出不穷,从对手机底层的访问,到多媒体的支持,从SVG到G3D。尽管很多规范真正在手机上实现还需要一段时间,但至少我们知道,J2ME真的可以做很多事。

6.FlashLite目前并不是以native方式存在于手机中,而是用应用程序扩展的方式,尽管安装一个.sis文件并不是难事,但如果厂商可以将FlashLitePlayer绑定在手机中,相信推广程度会更好。

7.FlashLite仍然不适合作复杂的应用,包括商务和娱乐方面,从安全机制,存储能力,网络连接等层面,FlashLite都比较薄弱,而且可能难以改进,而在这几个方面J2ME要强得多。

8.尽管签下了Nokia和SamSung,但是FlashLite推广的路还很长。而且,非智能手机仍然占据了大部分市场,Nokia虽然致力于发展S60等智能手机平台,但S40手机仍然是主要盈利点。因此,如果FlashLite只能出现在S60一类的中高端智能手机上,对FlashLite的普及可能并不是十分有利。

作为一个开发者,最重要的是了解各种技术的优势劣势,用适当的工具完成最适当的工作。至于“那种技术最强”的问题,大可不必争个你死我活。

注:文本中的J2ME实际上特指(MIDP/CLDC规范,不包含CDC和PersonalJava)

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值