第一部分 Matrix的数学原理
在Android中,如果你用Matrix进行过图像处理,那么一定知道Matrix这个类。Android中的Matrix是一个3 x 3的矩阵,其内容如下:
Matrix的对图像的处理可分为四类基本变换:
Translate 平移变换
Rotate 旋转变换
Scale 缩放变换
Skew 错切变换
从字面上理解,矩阵中的MSCALE用于处理缩放变换,MSKEW用于处理错切变换,MTRANS用于处理平移变换,MPERSP用于处理透视变换。实际中当然不能完全按照字面上的说法去理解Matrix。同时,在Android的文档中,未见到用Matrix进行透视变换的相关说明,所以本文也不讨论这方面的问题。
针对每种变换,Android提供了pre、set和post三种操作方式。其中
set用于设置Matrix中的值。
pre是先乘,因为矩阵的乘法不满足交换律,因此先乘、后乘必须要严格区分。先乘相当于矩阵运算中的右乘。
post是后乘,因为矩阵的乘法不满足交换律,因此先乘、后乘必须要严格区分。后乘相当于矩阵运算中的左乘。
除平移变换(Translate)外,旋转变换(Rotate)、缩放变换(Scale)和错切变换(Skew)都可以围绕一个中心点来进行,如果不指定,在默认情况下是围绕(0, 0)来进行相应的变换的。
下面我们来看看四种变换的具体情形。由于所有的图形都是有点组成,因此我们只需要考察一个点相关变换即可。
一、 平移变换
假定有一个点的坐标是,将其移动到,再假定在x轴和y轴方向移动的大小分别为:
如下图所示:
不难知道:
如果用矩阵来表示的话,就可以写成:
二、 旋转变换
2.1 围绕坐标原点旋转:
假定有一个点,相对坐标原点顺时针旋转后的情形,同时假定P点离坐标原点的距离为r,如下图:
那么,
如果用矩阵,就可以表示为:
2.2 围绕某个点旋转
如果是围绕某个点顺时针旋转,那么可以用矩阵表示为:
可以化为:
很显然,
1.
是将坐标原点移动到点后,的新坐标。
2.
是将上一步变换后的,围绕新的坐标原点顺时针旋转。
3.
经过上一步旋转变换后,再将坐标原点移回到原来的坐标原点。
所以,围绕某一点进行旋转变换,可以分成3个步骤,即首先将坐标原点移至该点,然后围绕新的坐标原点进行旋转变换,再然后将坐标原点移回到原先的坐标原点。
三、 缩放变换
理论上而言,一个点是不存在什么缩放变换的,但考虑到所有图像都是由点组成,因此,如果图像在x轴和y轴方向分别放大k1和k2倍的话,那么图像中的所有点的x坐标和y坐标均会分别放大k1和k2倍,即
用矩阵表示就是:
缩放变换比较好理解,就不多说了。
四、 错切变换
错切变换(skew)在数学上又称为Shear mapping(可译为“剪切变换”)或者Transvection(缩并),它是一种比较特殊的线性变换。错切变换的效果就是让所有点的x坐标(或者y坐标)保持不变,而对应的y坐标(或者x坐标)则按比例发生平移,且平移的大小和该点到x轴(或y轴)的垂直距离成正比。错切变换,属于等面积变换,即一个形状在错切变换的前后,其面积是相等的。
比如下图,各点的y坐标保持不变,但其x坐标则按比例发生了平移。这种情况将水平错切。
下图各点的x坐标保持不变,但其y坐标则按比例发生了平移。这种情况叫垂直错切。
假定一个点经过错切变换后得到,对于水平错切而言,应该有如下关系:
用矩阵表示就是:
扩展到3 x 3的矩阵就是下面这样的形式:
同理,对于垂直错切,可以有:
在数学上严格的错切变换就是上面这样的。在Android中除了有上面说到的情况外,还可以同时进行水平、垂直错切,那么形式上就是:
五、 对称变换
除了上面讲到的4中基本变换外,事实上,我们还可以利用Matrix,进行对称变换。所谓对称变换,就是经过变化后的图像和原图像是关于某个对称轴是对称的。比如,某点经过对称变换后得到,
如果对称轴是x轴,难么,
用矩阵表示就是:
如果对称轴是y轴,那么,
用矩阵表示就是:
如果对称轴是y = x,如图:
那么,
很容易可以解得:
用矩阵表示就是:
同样的道理,如果对称轴是y = -x,那么用矩阵表示就是:
特殊地,如果对称轴是y = kx,如下图:
那么,
很容易可解得:
用矩阵表示就是:
当k = 0时,即y = 0,也就是对称轴为x轴的情况;当k趋于无穷大时,即x = 0,也就是对称轴为y轴的情况;当k =1时,即y = x,也就是对称轴为y = x的情况;当k = -1时,即y = -x,也就是对称轴为y = -x的情况。不难验证,这和我们前面说到的4中具体情况是相吻合的。
如果对称轴是y = kx + b这样的情况,只需要在上面的基础上增加两次平移变换即可,即先将坐标原点移动到(0, b),然后做上面的关于y = kx的对称变换,再然后将坐标原点移回到原来的坐标原点即可。用矩阵表示大致是这样的:
需要特别注意:在实际编程中,我们知道屏幕的y坐标的正向和数学中y坐标的正向刚好是相反的,所以在数学上y = x和屏幕上的y = -x才是真正的同一个东西,反之亦然。也就是说,如果要使图片在屏幕上看起来像按照数学意义上y = x对称,那么需使用这种转换:
要使图片在屏幕上看起来像按照数学意义上y = -x对称,那么需使用这种转换:
关于对称轴为y = kx或y = kx + b的情况,同样需要考虑这方面的问题。
第二部分 代码验证
在第一部分中讲到的各种图像变换的验证代码如下,一共列出了10种情况。如果要验证其中的某一种情况,只需将相应的代码反注释即可。试验中用到的图片:
其尺寸为162 x 251。
每种变换的结果,请见代码之后的说明。
- <spanstyle="font-size:13px;"></span><prename="code"class="java">packagecom.pat.testtransformmatrix;
- importandroid.app.Activity;
- importandroid.content.Context;
- importandroid.graphics.Bitmap;
- importandroid.graphics.BitmapFactory;
- importandroid.graphics.Canvas;
- importandroid.graphics.Matrix;
- importandroid.os.Bundle;
- importandroid.util.Log;
- importandroid.view.MotionEvent;
- importandroid.view.View;
- importandroid.view.Window;
- importandroid.view.WindowManager;
- importandroid.view.View.OnTouchListener;
- importandroid.widget.ImageView;
- publicclassTestTransformMatrixActivityextendsActivity
- implements
- OnTouchListener
- {
- privateTransformMatrixViewview;
- @Override
- publicvoidonCreate(BundlesavedInstanceState)
- {
- super.onCreate(savedInstanceState);
- requestWindowFeature(Window.FEATURE_NO_TITLE);
- this.getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,WindowManager.LayoutParams.FLAG_FULLSCREEN);
- view=newTransformMatrixView(this);
- view.setScaleType(ImageView.ScaleType.MATRIX);
- view.setOnTouchListener(this);
- setContentView(view);
- }
- classTransformMatrixViewextendsImageView
- {
- privateBitmapbitmap;
- privateMatrixmatrix;
- publicTransformMatrixView(Contextcontext)
- {
- super(context);
- bitmap=BitmapFactory.decodeResource(getResources(),R.drawable.sophie);
- matrix=newMatrix();
- }
- @Override
- protectedvoidonDraw(Canvascanvas)
- {
- //画出原图像
- canvas.drawBitmap(bitmap,0,0,null);
- //画出变换后的图像
- canvas.drawBitmap(bitmap,matrix,null);
- super.onDraw(canvas);
- }
- @Override
- publicvoidsetImageMatrix(Matrixmatrix)
- {
- this.matrix.set(matrix);
- super.setImageMatrix(matrix);
- }
- publicBitmapgetImageBitmap()
- {
- returnbitmap;
- }
- }
- publicbooleanonTouch(Viewv,MotionEvente)
- {
- if(e.getAction()==MotionEvent.ACTION_UP)
- {
- Matrixmatrix=newMatrix();
- //输出图像的宽度和高度(162x251)
- Log.e("TestTransformMatrixActivity","imagesize:widthxheight="+view.getImageBitmap().getWidth()+"x"+view.getImageBitmap().getHeight());
- //1.平移
- matrix.postTranslate(view.getImageBitmap().getWidth(),view.getImageBitmap().getHeight());
- //在x方向平移view.getImageBitmap().getWidth(),在y轴方向view.getImageBitmap().getHeight()
- view.setImageMatrix(matrix);
- //下面的代码是为了查看matrix中的元素
- float[]matrixValues=newfloat[9];
- matrix.getValues(matrixValues);
- for(inti=0;i<3;++i)
- {
- Stringtemp=newString();
- for(intj=0;j<3;++j)
- {
- temp+=matrixValues[3*i+j]+"\t";
- }
- Log.e("TestTransformMatrixActivity",temp);
- }
- 2.旋转(围绕图像的中心点)
- //matrix.setRotate(45f,view.getImageBitmap().getWidth()/2f,view.getImageBitmap().getHeight()/2f);
- //
- 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠
- //matrix.postTranslate(view.getImageBitmap().getWidth()*1.5f,0f);
- //view.setImageMatrix(matrix);
- //
- 下面的代码是为了查看matrix中的元素
- //float[]matrixValues=newfloat[9];
- //matrix.getValues(matrixValues);
- //for(inti=0;i<3;++i)
- //{
- //Stringtemp=newString();
- //for(intj=0;j<3;++j)
- //{
- //temp+=matrixValues[3*i+j]+"\t";
- //}
- //Log.e("TestTransformMatrixActivity",temp);
- //}
- 3.旋转(围绕坐标原点)+平移(效果同2)
- //matrix.setRotate(45f);
- //matrix.preTranslate(-1f*view.getImageBitmap().getWidth()/2f,-1f*view.getImageBitmap().getHeight()/2f);
- //matrix.postTranslate((float)view.getImageBitmap().getWidth()/2f,(float)view.getImageBitmap().getHeight()/2f);
- //
- 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠
- //matrix.postTranslate((float)view.getImageBitmap().getWidth()*1.5f,0f);
- //view.setImageMatrix(matrix);
- //
- 下面的代码是为了查看matrix中的元素
- //float[]matrixValues=newfloat[9];
- //matrix.getValues(matrixValues);
- //for(inti=0;i<3;++i)
- //{
- //Stringtemp=newString();
- //for(intj=0;j<3;++j)
- //{
- //temp+=matrixValues[3*i+j]+"\t";
- //}
- //Log.e("TestTransformMatrixActivity",temp);
- //}
- 4.缩放
- //matrix.setScale(2f,2f);
- 下面的代码是为了查看matrix中的元素
- //float[]matrixValues=newfloat[9];
- //matrix.getValues(matrixValues);
- //for(inti=0;i<3;++i)
- //{
- //Stringtemp=newString();
- //for(intj=0;j<3;++j)
- //{
- //temp+=matrixValues[3*i+j]+"\t";
- //}
- //Log.e("TestTransformMatrixActivity",temp);
- //}
- //
- 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠
- //matrix.postTranslate(view.getImageBitmap().getWidth(),view.getImageBitmap().getHeight());
- //view.setImageMatrix(matrix);
- //
- 下面的代码是为了查看matrix中的元素
- //matrixValues=newfloat[9];
- //matrix.getValues(matrixValues);
- //for(inti=0;i<3;++i)
- //{
- //Stringtemp=newString();
- //for(intj=0;j<3;++j)
- //{
- //temp+=matrixValues[3*i+j]+"\t";
- //}
- //Log.e("TestTransformMatrixActivity",temp);
- //}
- 5.错切-水平
- //matrix.setSkew(0.5f,0f);
- 下面的代码是为了查看matrix中的元素
- //float[]matrixValues=newfloat[9];
- //matrix.getValues(matrixValues);
- //for(inti=0;i<3;++i)
- //{
- //Stringtemp=newString();
- //for(intj=0;j<3;++j)
- //{
- //temp+=matrixValues[3*i+j]+"\t";
- //}
- //Log.e("TestTransformMatrixActivity",temp);
- //}
- //
- 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠
- //matrix.postTranslate(view.getImageBitmap().getWidth(),0f);
- //view.setImageMatrix(matrix);
- //
- 下面的代码是为了查看matrix中的元素
- //matrixValues=newfloat[9];
- //matrix.getValues(matrixValues);
- //for(inti=0;i<3;++i)
- //{
- //Stringtemp=newString();
- //for(intj=0;j<3;++j)
- //{
- //temp+=matrixValues[3*i+j]+"\t";
- //}
- //Log.e("TestTransformMatrixActivity",temp);
- //}
- 6.错切-垂直
- //matrix.setSkew(0f,0.5f);
- 下面的代码是为了查看matrix中的元素
- //float[]matrixValues=newfloat[9];
- //matrix.getValues(matrixValues);
- //for(inti=0;i<3;++i)
- //{
- //Stringtemp=newString();
- //for(intj=0;j<3;++j)
- //{
- //temp+=matrixValues[3*i+j]+"\t";
- //}
- //Log.e("TestTransformMatrixActivity",temp);
- //}
- //
- 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠
- //matrix.postTranslate(0f,view.getImageBitmap().getHeight());
- //view.setImageMatrix(matrix);
- //
- 下面的代码是为了查看matrix中的元素
- //matrixValues=newfloat[9];
- //matrix.getValues(matrixValues);
- //for(inti=0;i<3;++i)
- //{
- //Stringtemp=newString();
- //for(intj=0;j<3;++j)
- //{
- //temp+=matrixValues[3*i+j]+"\t";
- //}
- //Log.e("TestTransformMatrixActivity",temp);
- //}
- //7.错切-水平+垂直
- //matrix.setSkew(0.5f,0.5f);
- 下面的代码是为了查看matrix中的元素
- //float[]matrixValues=newfloat[9];
- //matrix.getValues(matrixValues);
- //for(inti=0;i<3;++i)
- //{
- //Stringtemp=newString();
- //for(intj=0;j<3;++j)
- //{
- //temp+=matrixValues[3*i+j]+"\t";
- //}
- //Log.e("TestTransformMatrixActivity",temp);
- //}
- //
- 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠
- //matrix.postTranslate(0f,view.getImageBitmap().getHeight());
- //view.setImageMatrix(matrix);
- //
- 下面的代码是为了查看matrix中的元素
- //matrixValues=newfloat[9];
- //matrix.getValues(matrixValues);
- //for(inti=0;i<3;++i)
- //{
- //Stringtemp=newString();
- //for(intj=0;j<3;++j)
- //{
- //temp+=matrixValues[3*i+j]+"\t";
- //}
- //Log.e("TestTransformMatrixActivity",temp);
- //}
- 8.对称(水平对称)
- //floatmatrix_values[]={1f,0f,0f,0f,-1f,0f,0f,0f,1f};
- //matrix.setValues(matrix_values);
- 下面的代码是为了查看matrix中的元素
- //float[]matrixValues=newfloat[9];
- //matrix.getValues(matrixValues);
- //for(inti=0;i<3;++i)
- //{
- //Stringtemp=newString();
- //for(intj=0;j<3;++j)
- //{
- //temp+=matrixValues[3*i+j]+"\t";
- //}
- //Log.e("TestTransformMatrixActivity",temp);
- //}
- //
- 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠
- //matrix.postTranslate(0f,view.getImageBitmap().getHeight()*2f);
- //view.setImageMatrix(matrix);
- //
- 下面的代码是为了查看matrix中的元素
- //matrixValues=newfloat[9];
- //matrix.getValues(matrixValues);
- //for(inti=0;i<3;++i)
- //{
- //Stringtemp=newString();
- //for(intj=0;j<3;++j)
- //{
- //temp+=matrixValues[3*i+j]+"\t";
- //}
- //Log.e("TestTransformMatrixActivity",temp);
- //}
- 9.对称-垂直
- //floatmatrix_values[]={-1f,0f,0f,0f,1f,0f,0f,0f,1f};
- //matrix.setValues(matrix_values);
- 下面的代码是为了查看matrix中的元素
- //float[]matrixValues=newfloat[9];
- //matrix.getValues(matrixValues);
- //for(inti=0;i<3;++i)
- //{
- //Stringtemp=newString();
- //for(intj=0;j<3;++j)
- //{
- //temp+=matrixValues[3*i+j]+"\t";
- //}
- //Log.e("TestTransformMatrixActivity",temp);
- //}
- //
- 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠
- //matrix.postTranslate(view.getImageBitmap().getWidth()*2f,0f);
- //view.setImageMatrix(matrix);
- //
- 下面的代码是为了查看matrix中的元素
- //matrixValues=newfloat[9];
- //matrix.getValues(matrixValues);
- //for(inti=0;i<3;++i)
- //{
- //Stringtemp=newString();
- //for(intj=0;j<3;++j)
- //{
- //temp+=matrixValues[3*i+j]+"\t";
- //}
- //Log.e("TestTransformMatrixActivity",temp);
- //}
- 10.对称(对称轴为直线y=x)
- //floatmatrix_values[]={0f,-1f,0f,-1f,0f,0f,0f,0f,1f};
- //matrix.setValues(matrix_values);
- 下面的代码是为了查看matrix中的元素
- //float[]matrixValues=newfloat[9];
- //matrix.getValues(matrixValues);
- //for(inti=0;i<3;++i)
- //{
- //Stringtemp=newString();
- //for(intj=0;j<3;++j)
- //{
- //temp+=matrixValues[3*i+j]+"\t";
- //}
- //Log.e("TestTransformMatrixActivity",temp);
- //}
- //
- 做下面的平移变换,纯粹是为了让变换后的图像和原图像不重叠
- //matrix.postTranslate(view.getImageBitmap().getHeight()+view.getImageBitmap().getWidth(),
- //view.getImageBitmap().getHeight()+view.getImageBitmap().getWidth());
- //view.setImageMatrix(matrix);
- //
- 下面的代码是为了查看matrix中的元素
- //matrixValues=newfloat[9];
- //matrix.getValues(matrixValues);
- //for(inti=0;i<3;++i)
- //{
- //Stringtemp=newString();
- //for(intj=0;j<3;++j)
- //{
- //temp+=matrixValues[3*i+j]+"\t";
- //}
- //Log.e("TestTransformMatrixActivity",temp);
- //}
- view.invalidate();
- }
- returntrue;
- }
- }</pre><br>
- <br>
- <p><spanstyle="font-size:13px"></span></p>
- <p><spanstyle="font-size:13px">下面给出上述代码中,各种变换的具体结果及其对应的相关变换矩阵</span></p>
- <p><spanstyle="font-size:13px">1.平移</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_1321712352qQRu.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">输出的结果:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_13217123565Wwz.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">请对照第一部分中的“一、平移变换”所讲的情形,考察上述矩阵的正确性。</span></p>
- <p><spanstyle="font-size:13px"></span></p>
- <p><spanstyle="font-size:13px">2.旋转(围绕图像的中心点)</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_132171250556xp.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">输出的结果:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_1321712512Yj1i.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">它实际上是</span></p>
- <p><spanstyle="font-size:13px">matrix.setRotate(45f,view.getImageBitmap().getWidth()/2f,view.getImageBitmap().getHeight()/2f);</span></p>
- <p><spanstyle="font-size:13px">matrix.postTranslate(view.getImageBitmap().getWidth()*1.5f,0f);</span></p>
- <p><spanstyle="font-size:13px">这两条语句综合作用的结果。根据第一部分中“二、旋转变换”里面关于围绕某点旋转的公式,</span></p>
- <p><spanstyle="font-size:13px">matrix.setRotate(45f,view.getImageBitmap().getWidth()/2f,view.getImageBitmap().getHeight()/2f);</span></p>
- <p><spanstyle="font-size:13px">所产生的转换矩阵就是:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_1321712644I54M.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">而matrix.postTranslate(view.getImageBitmap().getWidth()*1.5f,0f);的意思就是在上述矩阵的左边再乘以下面的矩阵:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_13217126508k4V.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">关于post是左乘这一点,我们在前面的理论部分曾经提及过,后面我们还会专门讨论这个问题。</span></p>
- <p><spanstyle="font-size:13px"></span></p>
- <p><spanstyle="font-size:13px">所以它实际上就是:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_13217126608wdT.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">出去计算上的精度误差,我们可以看到我们计算出来的结果,和程序直接输出的结果是一致的。</span></p>
- <p><spanstyle="font-size:13px"></span></p>
- <p><spanstyle="font-size:13px">3.旋转(围绕坐标原点旋转,在加上两次平移,效果同2)</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_132171250556xp.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">根据第一部分中“二、旋转变换”里面关于围绕某点旋转的解释,不难知道:</span></p>
- <p><spanstyle="font-size:13px">matrix.setRotate(45f,view.getImageBitmap().getWidth()/2f,view.getImageBitmap().getHeight()/2f);</span></p>
- <p><spanstyle="font-size:13px">等价于</span></p>
- <p><spanstyle="font-size:13px">matrix.setRotate(45f);</span></p>
- <p><spanstyle="font-size:13px">matrix.preTranslate(-1f*view.getImageBitmap().getWidth()/2f,-1f*view.getImageBitmap().getHeight()/2f);</span></p>
- <p><spanstyle="font-size:13px">matrix.postTranslate((<strong>float</strong>)view.getImageBitmap().getWidth()/2f,(<strong>float</strong>)view.getImageBitmap().getHeight()/2f);</span></p>
- <p><spanstyle="font-size:13px"></span></p>
- <p><spanstyle="font-size:13px">其中matrix.setRotate(45f)对应的矩阵是:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_1321712949GjN7.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">matrix.preTranslate(-1f*view.getImageBitmap().getWidth()/2f,-1f*view.getImageBitmap().getHeight()/2f)对应的矩阵是:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_1321712956BNj8.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">由于是preTranslate,是先乘,也就是右乘,即它应该出现在matrix.setRotate(45f)所对应矩阵的右侧。</span></p>
- <p><spanstyle="font-size:13px"></span></p>
- <p><spanstyle="font-size:13px">matrix.postTranslate((<strong>float</strong>)view.getImageBitmap().getWidth()/2f,(<strong>float</strong>)view.getImageBitmap().getHeight()/2f)对应的矩阵是:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_1321712963iNO1.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">这次由于是postTranslate,是后乘,也就是左乘,即它应该出现在matrix.setRotate(45f)所对应矩阵的左侧。</span></p>
- <p><spanstyle="font-size:13px"></span></p>
- <p><spanstyle="font-size:13px">所以综合起来,</span></p>
- <p><spanstyle="font-size:13px">matrix.setRotate(45f);</span></p>
- <p><spanstyle="font-size:13px">matrix.preTranslate(-1f*view.getImageBitmap().getWidth()/2f,-1f*view.getImageBitmap().getHeight()/2f);</span></p>
- <p><spanstyle="font-size:13px">matrix.postTranslate((<strong>float</strong>)view.getImageBitmap().getWidth()/2f,(<strong>float</strong>)view.getImageBitmap().getHeight()/2f);</span></p>
- <p><spanstyle="font-size:13px">对应的矩阵就是:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_1321713055HOOt.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">这和下面这个矩阵(围绕图像中心顺时针旋转45度)其实是一样的:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_1321713100VIOz.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">因此,此处变换后的图像和2中变换后的图像时一样的。</span></p>
- <p><spanstyle="font-size:13px"></span></p>
- <p><spanstyle="font-size:13px">4.缩放变换</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_1321713185yKS7.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">程序所输出的两个矩阵分别是:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_13217131941R24.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">其中第二个矩阵,其实是下面两个矩阵相乘的结果:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_1321713201VRxs.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">大家可以对照第一部分中的“三、缩放变换”和“一、平移变换”说法,自行验证结果。</span></p>
- <p><spanstyle="font-size:13px"></span></p>
- <p><spanstyle="font-size:13px">5.错切变换(水平错切)</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_132171330766G0.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">代码所输出的两个矩阵分别是:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_1321713314Dk69.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">其中,第二个矩阵其实是下面两个矩阵相乘的结果:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_1321713322PeML.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">大家可以对照第一部分中的“四、错切变换”和“一、平移变换”的相关说法,自行验证结果。</span></p>
- <p><spanstyle="font-size:13px"></span></p>
- <p><spanstyle="font-size:13px">6.错切变换(垂直错切)</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_1321713502Akg2.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">代码所输出的两个矩阵分别是:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_1321713509Hz7p.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">其中,第二个矩阵其实是下面两个矩阵相乘的结果:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_1321713516TUvx.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">大家可以对照第一部分中的“四、错切变换”和“一、平移变换”的相关说法,自行验证结果。</span></p>
- <p><spanstyle="font-size:13px"></span></p>
- <p><spanstyle="font-size:13px">7.错切变换(水平+垂直错切)</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_1321713655Qsij.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">代码所输出的两个矩阵分别是:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_13217136824kKR.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">其中,后者是下面两个矩阵相乘的结果:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_13217136931vl4.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">大家可以对照第一部分中的“四、错切变换”和“一、平移变换”的相关说法,自行验证结果。</span></p>
- <p><spanstyle="font-size:13px"></span></p>
- <p><spanstyle="font-size:13px">8.对称变换(水平对称)</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_13217141232rJI.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">代码所输出的两个各矩阵分别是:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_1321714133P0ha.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">其中,后者是下面两个矩阵相乘的结果:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_13217141417Bi3.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">大家可以对照第一部分中的“五、对称变换”和“一、平移变换”的相关说法,自行验证结果。</span></p>
- <p><spanstyle="font-size:13px"></span></p>
- <p><spanstyle="font-size:13px">9.对称变换(垂直对称)</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_1321714261NN3V.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">代码所输出的两个矩阵分别是:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_1321714269Kqs4.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">其中,后者是下面两个矩阵相乘的结果:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_1321714276ai2f.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">大家可以对照第一部分中的“五、对称变换”和“一、平移变换”的相关说法,自行验证结果。</span></p>
- <p><spanstyle="font-size:13px"></span></p>
- <p><spanstyle="font-size:13px">10.对称变换(对称轴为直线<em>y=x</em>)</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_13217144950030.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">代码所输出的两个矩阵分别是:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_13217145038hN8.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">其中,后者是下面两个矩阵相乘的结果:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_1321714509sBN4.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">大家可以对照第一部分中的“五、对称变换”和“一、平移变换”的相关说法,自行验证结果。</span></p>
- <p><spanstyle="font-size:13px"></span></p>
- <p><spanstyle="font-size:13px">11.关于先乘和后乘的问题</span></p>
- <p><spanstyle="font-size:13px">由于矩阵的乘法运算不满足交换律,我们在前面曾经多次提及先乘、后乘的问题,即先乘就是矩阵运算中右乘,后乘就是矩阵运算中的左乘。其实先乘、后乘的概念是针对变换操作的时间先后而言的,左乘、右乘是针对矩阵运算的左右位置而言的。以第一部分“二、旋转变换”中围绕某点旋转的情况为例:</span></p>
- <p><spanstyle="font-size:13px"><imgsrc="http://hi.csdn.net/attachment/201111/19/0_1321714645396z.gif"alt=""></span></p>
- <p><spanstyle="font-size:13px">越靠近原图像中像素的矩阵,越先乘,越远离原图像中像素的矩阵,越后乘。事实上,图像处理时,矩阵的运算是从右边往左边方向进行运算的。这就形成了越在右边的矩阵(右乘),越先运算(先乘),反之亦然。</span></p>
- <p><spanstyle="font-size:13px"></span></p>
- <p><spanstyle="font-size:13px">当然,在实际中,如果首先指定了一个matrix,比如我们先setRotate(<imgsrc="http://hi.csdn.net/attachment/201111/19/0_1321714654C9Xc.gif"alt="">),即指定了上面变换矩阵中,中间的那个矩阵,那么后续的矩阵到底是pre还是post运算,都是相对这个中间矩阵而言的。</span></p>
- <p><spanstyle="font-size:13px"></span></p>
- <spanstyle="font-size:13px">所有这些,其实都是很自然的事情。</span>
- <pre></pre>
- <pre></pre>
- <pre></pre>
- <pre></pre>
第三部分 应用
在这一部分,我们会将前面两部分所了解到的内容和Android手势结合起来,利用各种不同的手势对图像进行平移、缩放和旋转,前面两项都是在实践中经常需要用到的功能,后一项据说苹果也是最近才加上的,而实际上在Android中,咱们通过自己的双手,也可以很轻松地实现之。
首先创建一个Android项目PatImageView,同时创建一个Activity:PatImageViewActivity。完成这一步后, 记得在AndroidManifest.xml中增加如下许可:
<uses-permissionandroid:name="android.permission.VIBRATE"/>
因为我们将要通过短按还是长按,来确定将图片到底是缩放还是旋转。
现在来创建一个ImageView的派生类:PatImageView,其代码(PatImageView.java)如下(2011-11-22 revised):
- packagecom.pat.imageview;
- importandroid.app.Service;
- importandroid.content.Context;
- importandroid.graphics.Matrix;
- importandroid.graphics.PointF;
- importandroid.os.Vibrator;
- importandroid.util.FloatMath;
- importandroid.view.GestureDetector;
- importandroid.view.MotionEvent;
- importandroid.view.View;
- importandroid.widget.ImageView;
- publicclassPatImageViewextendsImageView
- {
- privateMatrixmatrix;
- privateMatrixsavedMatrix;
- privatebooleanlong_touch=false;
- privatestaticintNONE=0;
- privatestaticintDRAG=1;//拖动
- privatestaticintZOOM=2;//缩放
- privatestaticintROTA=3;//旋转
- privateintmode=NONE;
- privatePointFstartPoint;
- privatePointFmiddlePoint;
- privatefloatoldDistance;
- privatefloatoldAngle;
- privateVibratorvibrator;
- privateGestureDetectorgdetector;
- publicPatImageView(finalContextcontext)
- {
- super(context);
- matrix=newMatrix();
- savedMatrix=newMatrix();
- matrix.setTranslate(0f,0f);
- setScaleType(ScaleType.MATRIX);
- setImageMatrix(matrix);
- startPoint=newPointF();
- middlePoint=newPointF();
- oldDistance=1f;
- gdetector=newGestureDetector(context,newGestureDetector.OnGestureListener()
- {
- @Override
- publicbooleanonSingleTapUp(MotionEvente)
- {
- returntrue;
- }
- @Override
- publicvoidonShowPress(MotionEvente)
- {
- }
- @Override
- publicbooleanonScroll(MotionEvente1,MotionEvente2,floatdistanceX,floatdistanceY)
- {
- returntrue;
- }
- @Override
- publicvoidonLongPress(MotionEvente)
- {
- long_touch=true;
- vibrator=(Vibrator)context.getSystemService(Service.VIBRATOR_SERVICE);
- //振动50ms,提示后续的操作将是旋转图片,而非缩放图片
- vibrator.vibrate(50);
- }
- @Override
- publicbooleanonFling(MotionEvente1,MotionEvente2,floatvelocityX,floatvelocityY)
- {
- returntrue;
- }
- @Override
- publicbooleanonDown(MotionEvente)
- {
- returntrue;
- }
- });
- setOnTouchListener(newOnTouchListener()
- {
- publicbooleanonTouch(Viewview,MotionEventevent)
- {
- switch(event.getAction()&MotionEvent.ACTION_MASK)
- {
- caseMotionEvent.ACTION_DOWN://第一个手指touch
- savedMatrix.set(matrix);
- startPoint.set(event.getX(),event.getY());
- mode=DRAG;
- long_touch=false;
- break;
- caseMotionEvent.ACTION_POINTER_DOWN://第二个手指touch
- oldDistance=getDistance(event);//计算第二个手指touch时,两指之间的距离
- oldAngle=getDegree(event);//计算第二个手指touch时,两指所形成的直线和x轴的角度
- if(oldDistance>10f)
- {
- savedMatrix.set(matrix);
- middlePoint=midPoint(event);
- if(!long_touch)
- {
- mode=ZOOM;
- }
- else
- {
- mode=ROTA;
- }
- }
- break;
- caseMotionEvent.ACTION_UP:
- mode=NONE;
- break;
- caseMotionEvent.ACTION_POINTER_UP:
- mode=NONE;
- break;
- caseMotionEvent.ACTION_MOVE:
- if(vibrator!=null)vibrator.cancel();
- if(mode==DRAG)
- {
- matrix.set(savedMatrix);
- matrix.postTranslate(event.getX()-startPoint.x,event.getY()-startPoint.y);
- }
- if(mode==ZOOM)
- {
- floatnewDistance=getDistance(event);
- if(newDistance>10f)
- {
- matrix.set(savedMatrix);
- floatscale=newDistance/oldDistance;
- matrix.postScale(scale,scale,middlePoint.x,middlePoint.y);
- }
- }
- if(mode==ROTA)
- {
- floatnewAngle=getDegree(event);
- matrix.set(savedMatrix);
- floatdegrees=newAngle-oldAngle;
- matrix.postRotate(degrees,middlePoint.x,middlePoint.y);
- }
- break;
- }
- setImageMatrix(matrix);
- invalidate();
- gdetector.onTouchEvent(event);
- returntrue;
- }
- });
- }
- //计算两个手指之间的距离
- privatefloatgetDistance(MotionEventevent)
- {
- floatx=event.getX(0)-event.getX(1);
- floaty=event.getY(0)-event.getY(1);
- returnFloatMath.sqrt(x*x+y*y);
- }
- //计算两个手指所形成的直线和x轴的角度
- privatefloatgetDegree(MotionEventevent)
- {
- return(float)(Math.atan((event.getY(1)-event.getY(0))/(event.getX(1)-event.getX(0)))*180f);
- }
- //计算两个手指之间,中间点的坐标
- privatePointFmidPoint(MotionEventevent)
- {
- PointFpoint=newPointF();
- floatx=event.getX(0)+event.getX(1);
- floaty=event.getY(0)+event.getY(1);
- point.set(x/2,y/2);
- returnpoint;
- }
- }
下面完善PatImageViewActivity.java的代码,使之如下:
- packagecom.pat.imageview;
- importandroid.app.Activity;
- importandroid.graphics.Bitmap;
- importandroid.graphics.BitmapFactory;
- importandroid.os.Bundle;
- importandroid.view.Window;
- importandroid.view.WindowManager;
- publicclassPatImageViewActivityextendsActivity
- {
- @Override
- publicvoidonCreate(BundlesavedInstanceState)
- {
- super.onCreate(savedInstanceState);
- requestWindowFeature(Window.FEATURE_NO_TITLE);
- this.getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
- WindowManager.LayoutParams.FLAG_FULLSCREEN);
- PatImageViewpiv=newPatImageView(this);
- Bitmapbmp=BitmapFactory.decodeResource(getResources(),R.drawable.sophie);
- piv.setImageBitmap(bmp);
- setContentView(piv);
- }
- }