算法导论习题 5.1 -2

本文详细描述了一种利用random(0,1)函数生成[0, n-1]范围内随机整数的算法。通过计算m比特整数的生成范围并确保其落在指定区间内,该方法有效解决了随机数生成的问题,并分析了算法的正确性和复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

描述random(a, b)过程的一种实现,它只调用random(0,1)。作为a和b的函数,

你的程序期望运行时间是多少?

 

算法描述
这个题目相当于在能随机生成0,1的前提下,要求生成[0, 1, ...,n-1]范围内的一个整数
1 求出最小的 m,使2^m >= n-1
2 通过random(0,1),产生一个m比特的整数,这样能随机产生[0, 2^m-1]内的整数,

若产生的整数位于[0, n-1]内,则取这个数作为结果。如果这个数在[0,n-1]外,则丢弃它,再次运行算法重新生成一个。

 

算法的正确性
 a) 证明上述算法可以产生 [0, n-1]范围内的随机数
在范围[0,1, ..., n-1, n, ..., 2^m-1]范围内,总共有p = 2^m个数,其中合法的数是[0, 1, ..., n-1]共n个,

非法的数为 [n, ..., 2^m-1]共q = 2^m-n个,则有 n + q = p。

 

 

算法最后会产生一个合法的随机数 X,0 <= X <= n-1, 显然 X 是

[0, n-1] 上的一个均匀分布。 P{X = i } = 1/n, 所以上述方法可以产生随机数

 

算法的复杂度

算法的数学模型是: 重复一系列伯努力实验,每次实验成功的概率是 n/p, 失败的概率是 q/p。

在取得一次成功前一共要进行多少次试验?  

设Pi表示产生随机数时运行了i次算法的概率,那么前i-1次产生的都是非法的数,

第i次产生的是合法的数,所以

 

这是典型的几何分布,其期望值等于成功概率的倒数为:  p/n = 2^m / n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值