POJ 1952(最长不下降子序列的个数)

求一个序列的最长不下降子序列的长度,与个数(相同数列算1个)

关键是如何判重。

显然如果之前有一个尾数相同且长度相同的序列,哪么后一个包含前一个所有可能的序列相同的序列,故将前一个序列删除(重复)


Program P1952;
var
   n,i,j,ans:longint;
   a,len,f,path:array[1..5000] of longint;
begin
   read(n);
   for i:=1 to n do read(a[i]);
   for i:=1 to n do
   begin
      len[i]:=1;
      f[i]:=1;
      path[i]:=i;
      for j:=i-1 downto 1 do
         if (a[j]>a[i]) and (len[j]+1>len[i]) then
         begin
            len[i]:=len[j]+1;
            f[i]:=f[j];
         end
         else if (a[j]>a[i]) and (len[j]+1=len[i]) then inc(f[i],f[j]);


      for j:=1 to i-1 do
         if (a[i]=a[j]) and (len[i]=len[j]) then f[j]:=0;



   end;
   j:=0;
   for i:=1 to n do if len[i]>j then j:=len[i];
   ans:=0;
   for i:=1 to n do if len[i]=j then inc(ans,f[i]);

   writeln(j,' ',ans);


end.


以下是Java解决POJ3233—矩阵幂序列问题的代码和解释: ```java import java.util.Scanner; public class Main { static int n, k, m; static int[][] A, E; public static void main(String[] args) { Scanner sc = new Scanner(System.in); n = sc.nextInt(); k = sc.nextInt(); m = sc.nextInt(); A = new int[n][n]; E = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { A[i][j] = sc.nextInt() % m; E[i][j] = (i == j) ? 1 : 0; } } int[][] res = matrixPow(A, k); int[][] ans = matrixAdd(res, E); printMatrix(ans); } // 矩阵乘法 public static int[][] matrixMul(int[][] a, int[][] b) { int[][] c = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { c[i][j] = (c[i][j] + a[i][k] * b[k][j]) % m; } } } return c; } // 矩阵快速幂 public static int[][] matrixPow(int[][] a, int b) { int[][] res = E; while (b > 0) { if ((b & 1) == 1) { res = matrixMul(res, a); } a = matrixMul(a, a); b >>= 1; } return res; } // 矩阵加法 public static int[][] matrixAdd(int[][] a, int[][] b) { int[][] c = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { c[i][j] = (a[i][j] + b[i][j]) % m; } } return c; } // 输出矩阵 public static void printMatrix(int[][] a) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { System.out.print(a[i][j] + " "); } System.out.println(); } } } ``` 解释: 1. 首先读入输入的n、k、m和矩阵A,同时初始化单位矩阵E。 2. 然后调用matrixPow函数求出A的k次幂矩阵res。 3. 最后将res和E相加得到结果ans,并输出。 4. matrixMul函数实现矩阵乘法,matrixPow函数实现矩阵快速幂,matrixAdd函数实现矩阵加法,printMatrix函数实现输出矩阵。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值