//POJ 1195 Mobile phones 线段树 二维线段树 单点更新 区间求和
/*
题意:
一个矩阵,初始化为0,两种操作:
1、将某点增加val
2、查询一个子矩阵的和
思路:
二维线段树,单点更新,区间求和,记得pushup.
*/
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define N 1050
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
int sum[N*3][N*3];
int n;
void SubBuild(int rt,int l,int r,int t){
sum[t][rt] = 0;
if(l!=r){
int mid = (l + r) >> 1;
SubBuild(lson,t);
SubBuild(rson,t);
}
}
void Build(int rt,int l,int r){
SubBuild(1,1,n,rt);
if(l!=r){
int mid = (l + r) >> 1;
Build(lson);
Build(rson);
}
}
void SubUpdate(int rt,int l,int r,int y,int val,int t){
if(l == r)
sum[t][rt] += val;
else{
int mid = (l + r) >> 1;
if(y <= mid) SubUpdate(lson,y,val,t);
else SubUpdate(rson,y,val,t);
sum[t][rt] = sum[t][rt<<1] + sum[t][rt<<1|1];
}
}
void Update(int rt,int l,int r,int x,int y,int val){
SubUpdate(1,1,n,y,val,rt);
if(l!=r){
int mid = (l + r) >> 1;
if(x <= mid) Update(lson,x,y,val);
else Update(rson,x,y,val);
}
}
__int64 SubQuery(int rt,int l,int r,int LY,int RY,int t){
if(LY <= l && RY >= r)
return sum[t][rt];
int mid = (l + r) >> 1;
__int64 ans = 0;
if(LY <= mid) ans += SubQuery(lson,LY,RY,t);
if(RY > mid ) ans += SubQuery(rson,LY,RY,t);
return ans;
}
__int64 Query(int rt,int l,int r,int LX,int RX,int LY,int RY){
if(LX <= l && RX >= r){
return SubQuery(1,1,n,LY,RY,rt);
}
int mid = (l + r) >> 1;
__int64 ans = 0;
if(LX <= mid) ans += Query(lson,LX,RX,LY,RY);
if(RX > mid ) ans += Query(rson,LX,RX,LY,RY);
return ans;
}
int main(){
int op;
int a,b,c,d;
while(scanf("%d %d",&op,&n)!=EOF){
++n;
Build(1,1,n);
while(scanf("%d",&op)){
if(op == 3)
break;
if(op == 1){
scanf("%d %d %d",&a,&b,&c);
++a,++b;
Update(1,1,n,a,b,c);
}
else{
scanf("%d %d %d %d",&a,&b,&c,&d);
++a,++b,++c,++d;
printf("%I64d\n",Query(1,1,n,a,c,b,d));
}
}
}
return 0;
}
POJ 1195 Mobile phones 线段树 二维线段树 单点更新 区间求和
最新推荐文章于 2020-04-27 21:28:15 发布