R与t分布(3) 分布的检验

我们依然用Kolmogorov-Smirnov连续分布检验法来检验一个连续分布是否是服从t分布。

原假设为H0:数据集符合t分布
研究假设H1:样本所来自的总体分布不符合t分布。
令F0(x)表示预先假设的理论分布,Fn(x)表示随机样本的累计概率(频率)函数.

统计量D为: D=max|F0(x) - Fn(x)|

D值越小,越接近0,表示样本数据越接近t分布
p值,如果p-value小于显著性水平α(0.05),则拒绝H0


> set.seed(1000)
> data<-rt(1000, 1,2)
> ks.test(data, "pt", 1, 2)

One-sample Kolmogorov-Smirnov test

data: data
D = 0.0254, p-value = 0.5389
alternative hypothesis: two-sided


结论: D值很小, p-value>0.05,不能拒绝原假设,所以数据集data符合自由度为=1, ncp=2的T分布
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值