先自定义一个UDAF,由于udaf是多输入一条输出的聚合,所以结果拼成字符串输出,代码如下:
public class Top4GroupBy extends UDAF {
//定义一个对象用于存储数据
public static class State {
private Map<Text, IntWritable> counts;
private int limit;
}
/**
* 累加数据,判断map的key中是否存在该字符串,如果存在累加,不存在放入map中
* @param s
* @param o
* @param i
*/
private static void increment(State s, Text o, int i) {
if (s.counts == null) {
s.counts = new HashMap<Text, IntWritable>();
}
IntWritable count = s.counts.get(o);
if (count == null) {
Text key = new Text();
key.set(o);
s.counts.put(key, new IntWritable(i));
} else {
count.set(count.get() + i);
}
}
public static class Top4GroupByEvaluator implements UDAFEvaluator {
private final State state;
public Top4GroupByEvaluator() {
state = new State();
}
@Override
public void init() {
if (state.counts != null) {
state.counts.clear();
}
if (state.limit == 0) {
state.limit = 100;
}
}
public boolean iterate(Text value, IntWritable limits) {
if (value == null || limits == null) {
return false;
} else {
state.limit = limits.get();
increment(state, value, 1);
}
return true;
}
public State terminatePartial() {
return state;
}
public boolean merge(State other) {
if (state == null || other == null) {
return false;
}
state.limit = other.limit;
for (Map.Entry<Text, IntWritable> e : other.counts.entrySet()) {
increment(state, e.getKey(), e.getValue().get());
}
return true;
}
public Text terminate() {
if (state == null || state.counts.size() == 0) {
return null;
}
Map<Text, IntWritable> it = sortByValue(state.counts, true);
StringBuffer str = new StringBuffer();
int i = 0;
for (Map.Entry<Text, IntWritable> e : it.entrySet()) {
++i;
if (i > state.limit) {//只输出传入条数的结果,并拼成字符串
break;
}
str.append(e.getKey().toString()).append("$@").append(e.getValue().get()).append("$*");
}
return new Text(str.toString());
}
/*
* 实现一个map按值的排序算法
*/
@SuppressWarnings("unchecked")
public static Map sortByValue(Map map, final boolean reverse) {
List list = new LinkedList(map.entrySet());
Collections.sort(list, new Comparator() {
public int compare(Object o1, Object o2) {
if (reverse) {
return -((Comparable) ((Map.Entry) o1).getValue()).compareTo(((Map.Entry) o2).getValue());
}
return ((Comparable) ((Map.Entry) o1).getValue()).compareTo(((Map.Entry) o2).getValue());
}
});
Map result = new LinkedHashMap();
for (Iterator it = list.iterator(); it.hasNext();) {
Map.Entry entry = (Map.Entry) it.next();
result.put(entry.getKey(), entry.getValue());
}
return result;
}
}
}
还需要自定义一个UDTF,安装分隔符将字符串切分,将字符串转化为多行的列表输出:
public class ExplodeMap extends GenericUDTF {
@Override
public void close() throws HiveException {
}
@Override
public StructObjectInspector initialize(ObjectInspector[] args) throws UDFArgumentException {
if (args.length != 1) {
throw new UDFArgumentLengthException("ExplodeMap takes only one argument");
}
if (args[0].getCategory() != ObjectInspector.Category.PRIMITIVE) {
throw new UDFArgumentException("ExplodeMap takes string as a parameter");
}
ArrayList<String> fieldNames = new ArrayList<String>();
ArrayList<ObjectInspector> fieldOIs = new ArrayList<ObjectInspector>();
fieldNames.add("col1");
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
fieldNames.add("col2");
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
fieldNames.add("col3");
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames, fieldOIs);
}
@Override
public void process(Object[] args) throws HiveException {
String input = args[0].toString();
String[] test = input.split("\\$\\*");
for (int i = 0; i < test.length; i++) {
try {
String[] result = new String[3];
String[] sp= test[i].split("\\$\\@");
result[0] =sp[0];
result[1] =sp[1];
result[2] = String.valueOf(i + 1);
forward(result);
} catch (Exception e) {
continue;
}
}
}
}
两个函数分别以top_group和explode_map为函数名加入到hive函数库中,应用例子如下(获取前100个landingrefer的top url 100)
hive -e "select t.landingrefer, mytable.col1, mytable.col2,mytable.col3 from (select landingrefer, top_group(url,100) pro, count(sid) s from pvlog where dt=20120719 and depth=1 group by landingrefer order by s desc limit 100) t lateral view explode_map(t.pro) mytable as col1, col2, col3;"> test