Rust 是否会重写 Python 解释器与有关的库,替代 C 语言地位? 近2年随着Rust语言的大力发展,一些系统与软件开始逐渐使用Rust语言来实现,并且一些大型公司也开始逐渐转向Rust因为在学习 Polars 库时,看到该库是使用Rust实现的,小编近一年也逐渐开始学习Rust语言,了解到其中的一些思想相对其他语言来说确实比较先进,所有权概念的引入,不仅可以提升性能,而且还保证了数据安全、准确,不会有数据竞争问题的产生小编最近在处理加解密任务时,借助Rust语言实现了一个DES加解密库,借助Rust 中的pyo3包,在Python 中借助maturin。
Python pandas中重排列与列重名 把数据导出到Excel中时,有时需要对列的顺序进行调整,按业务需求进行排列,并且字段名字不能是英文,这样方便业务人员查看与理解数据,在pandas中有相应的函数可以满足以上2个要求,让我们来学习一下吧。
Python 利用矢量化,计算2个经纬度之间的距离 假如全国所有的酒店/民宿经纬度信息已知的情况下,基于当前位置,怎么快速计算附近5KM内的酒店/民宿呢?现实中有大量的这种业务场景,需要快速计算2点间的地球距离本篇文章,比如当前的定位是在北京,那么没有必要去计算与上海的酒店/民宿距离;来进行优化,看看性能大约能提升多少。
Python polars学习-10 时间序列类型 polars学习系列文章,第10篇 时间序列类型(Time series)该系列文章会分享到github,大家可以去下载jupyter文件,进行参考学习。
Python polars学习-09 数据框关联与拼接 polars学习系列文章,第9篇 数据框关联与拼接(Join 、Concat)该系列文章会分享到github,大家可以去下载jupyter文件,进行参考学习。
Python polars学习-08 分类数据处理 polars学习系列文章,第8篇 分类数据处理(Categorical data)该系列文章会分享到github,大家可以去下载jupyter文件,进行参考学习仓库地址:https://github.com/DataShare-duo/polars_learn。
Python polars学习-07 缺失值 在 polars 中缺失值用null来表示,只有这1种表示方式,这个与 pandas 不同,在 pandas 中NaN(NotaNumber)也代表是缺失值,但在polars中把NaN归属为一种浮点数据},print(df)┌───────┐│ value ││ --- ││ i64 │╞═══════╡│ 1 ││ 2 ││ 3 ││ null ││ 5 ││ 6 ││ null ││ 8 ││ 9 │└───────┘。
Python polars学习-06 Lazy / Eager API polars学习系列文章,第6篇 Lazy / Eager API延迟、惰性即时、实时该系列文章会分享到github,大家可以去下载jupyter文件,进行参考学习仓库地址:https://github.com/DataShare-duo/polars_learn。
Python polars学习-05 包含的数据结构 polars学习系列文章,第5篇 包含的数据结构,与pandas一样,polarsSeriesDataFrame,大部分操作与pandas保持一致,减少了大家的学习难度该系列文章会分享到github,大家可以去下载jupyter文件,进行参考学习仓库地址:https://github.com/DataShare-duo/polars_learn。
让ChatGPT回答闰年的计算逻辑 背景闰年计算在平时很常见,不管是面试还是业务数据处理,基本都会涉及到闰年的计算逻辑,那么就来问一下ChatGPT(基于 4o 模型回答),让他来帮我们详细解释一下闰年的计算逻辑问题1:判断闰年的计算逻辑基本规则:一个年份如果能被4整除并且不能被100整除,则是闰年一个年份如果能被400整除,也是闰年这些规则总结起来就是:如果年份能被4整除,但不能被100整除,是闰年如果年份能...
Python polars学习-04 字符串数据处理 polars学习系列文章,第4篇 字符串数据处理该系列文章会分享到github,大家可以去下载jupyter文件,进行参考学习仓库地址:https://github.com/DataShare-duo/polars_learn。
polars学习-03 数据类型转换 polars学习系列文章,第3篇 数据类型转换。该系列文章会分享到github,大家可以去下载jupyter文件仓库地址:https://github.com/DataShare-duo/polars_learn。
Python polars学习-03 数据类型转换 背景polars学习系列文章,第3篇 数据类型转换。该系列文章会分享到github,大家可以去下载jupyter文件仓库地址:https://github.com/DataShare-duo/polars_learn小编运行环境import sysprint('python 版本:',sys.version.split('|')[0])#python 版本: 3.11.5 im...
Python polars学习-02 上下文与表达式 Polars 开发了自己的特定领域语言 (DSL),用于转换数据。该语言非常容易使用,允许进行复杂的查询,但仍保持人类可读性。该语言的两个核心组成部分是上下文和表达式Polars 自己设计了一套用于处理数据的功能。该功能易于使用,而且能以易理解的方式进行复杂的数据处理。上下文与表达式是该功能的两个核心组成部分。1. Contexts 上下文上下文是指需要计算表达式的上下文选择:df.select(…),df.with_columns(…)过滤:df.filter()
Python polars学习-01 读取与写入文件 在Python数据处理与分析中,大家在处理数据时,使用的基本都是Pandas,该库非常好用。随着 Rust 的出圈,基于其开发的Polars库,逐渐赢得大家的喜爱,在某些功能上更优于Pandas。于是小编在自学的过程中,逐步整理一些资料供大家参考学习,这些资料会分享到github仓库地址:https://github.com/DataShare-duo/polars_learnPS:为了学习Polars,小编先了解一遍 Rust,《Rust权威指南》
Python中的Lambda匿名函数 Lambda匿名函数在Python中经常出现,小巧切灵活,使用起来特别方便,但是小编建议大家少使用,最好多写几行代码,自定义个函数。既然Python中存在Lambda匿名函数,那么小编本着存在即合理的原则,还是介绍一下,本篇文章翻译自《Lambda Functions in Python》,分享出来供大家参考学习原文地址:https://www.clcoding.com/2024/03/lambda-functions-in-python.html。
Python pandas遍历行数据的2种方法 pandas在数据处理过程中,除了对整列字段进行处理之外,有时还需求对每一行进行遍历,来处理每行的数据。本篇文章介绍 2 种方法,来遍历pandas 的行数据。
Python 常用的加解密算法实例应用 经过移动互联网的蓬勃发展后,促使数字化也进入大众视野,现阶段各个行业能数字化的基本都数字化,至于数字化后好用不好用是另一回事了数字化就会涉及到数据处理、数据存放等,紧接着引出了数据安全,数据存放时是否需要加密的问题,大型公司数据存放在服务器时,敏感数据基本都是加密后存放小编这里大概梳理了几个常用的加密算法,本篇文章重点是实际使用,不介绍算法原理,算法原理相对比较深奥,涉及到密码学,小编也研究不懂。