- 博客(11)
- 收藏
- 关注
ubuntu16.04 mysql修改datadir的折腾
回顾:主要是mysql-systemd-start脚本中的路径开始没修改,换这种启动方式后没注意到他,引出了初始化数据库的一堆折腾。OS:Ubuntu16.04MySQL:5.7.17apt install之后默认datadir 为/var/lib/mysql,希望修改下datadir的路径修改/etc/mysql/mysql.conf.d/mysqld.c...
2016-12-18 00:07:00 332
系统设计思考
系统设计思考发表于 2015 年 6 月 6 日读了微信架构描述后的一点思考模块拆分:设计大系统,一定要拆分子系统,模块,项目,做到各项目间相互独立。在较小的系统设计中一般将模块划分清晰即可了,甚至是在一个进程之内,大一点在一台物理机上多进程实现,但在海量系统设计中,本身就是分布式的系统设计。不但要将其逻辑分离,还要注意其物理的分离,微信中登录状态服务器,LBS服务器,支付系统,摇一摇...
2016-03-26 22:22:00 217
Nginx+PHP+mysql
原载于http://1.graphnj.sinaapp.com/?p=14 ,涨价了,每天提醒云豆要耗尽发表于 2015 年 5 月 16 日Nginx不支持对外部程序的直接调用或解析,所有外部程序如PHP等都需要通过FastCGI进行中转。FastCGI最初是从CGI方式演变来的,但CGI方式性能太差,每一次请求都要重新读取配置文件及初始化一次PHP。而FastCGI的方式则只需...
2016-03-26 22:18:00 223
CVPR读书笔记[7]:PCA的理解
CVPR读书笔记[7]:PCA的理解朱金华 jinhua1982@gmail.com 下文中A'=A^t表示A的转置. n维数据的m个样本构成的n*m维矩阵X, 寻找n*n的变换矩阵W, 使得变换后的矩阵Y=W*X=Y.简单的说如果W=(w1,w2,...wn)'中wi为变换后空间的基, 则上述变换即将X映射为新空间中m个n维的点. 这个映射关系是一对一的 ...
2014-08-17 21:27:00 179
CVPR读书笔记[6]:Gabor特征提取
CVPR读书笔记[6]:Gabor特征提取朱金华jinhua1982@gmail.com 2014.08.16 周六 本文是Gabor特征提取三部分之三:[1]CVPR读书笔记[4]:Gabor特征提取之Gabor核http://blog.csdn.net/njzhujinhua/article/details/38460861[2] CVPR读书笔记[5]:Gabor特...
2014-08-16 17:11:00 622
CVPR读书笔记[5]:Gabor特征提取之Gabor核的实现
朱金华 jinhua1982@gmail.com 2014.08.09 本文参考http://blog.csdn.net/njzhujinhua/article/details/38460861的描述基于opencv实现Gabor核. 本文是Gabor特征提取三部分之二:[1]CVPR读书笔记[4]:Gabor特征提取之Gabor核http://blog.csdn...
2014-08-16 09:11:00 333
CVPR读书笔记[4]:Gabor特征提取之Gabor核
CVPR读书笔记[4]:Gabor特征提取之Gabor核 朱金华 jinhua1982@gmail.com 2014.08.09 本文是Gabor特征提取三部分之一:[1]CVPR读书笔记[4]:Gabor特征提取之Gabor核http://blog.csdn.net/njzhujinhua/article/details/38460861[2] CVPR读书...
2014-08-09 22:33:00 771
cvpr读书笔记[3]:traincascade与AdaBoost的opencv实现框架
本节研究traincascade的opencv实现.涉及的源代码位于:sources\apps\traincascade traincascade实现sources\modules\ml opencv machine learning部分sources\data\vec_files\trainingfaces_24-24.vec 正样本 http://blog.csdn....
2014-08-04 23:42:00 227
cvpr读书笔记[2]:boosting方法和AdaBoost算法概述
http://blog.csdn.net/njzhujinhua/article/details/38343741 boosting增强法的目标是提高任何给定的学习算法的分类准确率。 Boosting方法从弱学习算法出发,通过学习训练出一系列弱分类器,然后通过组合这些弱分类器构造一个强分类器。大部分Boosting方法都通过改变训练样本集学习得到,改变训练样本集则可通过改变训练数据的概率分...
2014-08-02 01:10:00 127
cvpr读书笔记[1]:VJ人脸检测框架。Viola-Jones Objects detection framwork
http://blog.csdn.net/njzhujinhua/article/details/38343683 人脸检测是人脸识别的第一道工序,其技术比较成熟,但因为其检测性能因素,直到Viola和Jones于CVPR2001上文章【1】发表之后才使得其能进行实际应用。VJ描述的物体检测框架包括三部分:【1】feature:VJ使用的特征仅与一个矩形区域内像素...
2014-08-02 01:02:00 640
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人