Python 学习入门(20)—— 循环

1. for 循环

for循环需要预先设定好循环的次数(n),然后执行隶属于for的语句n次。

基本构造是

for 元素 in 序列: 
    statement

举例来说,我们编辑一个叫forDemo.py的文件

for a in [3,4.4,'life']:
    print a

这个循环就是每次从表[3,4.4,'life'] 中取出一个元素(回忆:表是一种序列),然后将这个元素赋值给a,之后执行隶属于for的操作(print)。

介绍一个新的python函数range(),来帮助你建立表。

idx = range(5)
print idx

可以看到idx是[0,1,2,3,4]

这个函数的功能是新建一个表。这个表的元素都是整数,从0开始,下一个元素比前一个大1, 直到函数中所写的上限 (不包括该上限本身)

(关于range(),还有丰富用法,有兴趣可以查阅, python 3中, range()用法有变化,见评论区)

举例

for a in range(10):
    print a**2


2. while循环

while的用法是

while 条件:
    statement

while会不停地循环执行隶属于它的语句,直到条件为假(False)
举例

while i < 10:
    print i
    i = i + 1


3. 中断循环

(定义一个的说法。循环是相同的一组操作重复多次,我们把其中的一组操作叫做一环)

continue# 在同一循环的某一环,如果遇到continue, 那么跳过这一环,进行下一次环的操作

break# 停止执行整个循环

for i in range(10):
    if i == 2: 
continue print i

当循环执行到i = 2的时候,if条件成立,触发continue, 跳过本环(不执行print),继续进行下一环(i = 3)

for i in range(10):
    if i == 2:        
        break
    print i

当循环执行到i = 2的时候,if条件成立,触发break, 循环停止执行。

总结

range()

for 元素 in 序列:

while 条件:

continue

break


更加灵活的循环方式

1. 利用range(), 得到下标

在Python中,for循环后的in跟随一个序列的话,循环每次使用的序列元素,而不是序列的下标。

之前我们已经使用过range来控制for循环。现在,我们继续开发range的功能,以实现下标对循环的控制:

S = 'abcdefghijk'
for i in range(0,len(S),2):
    print S[i]

在该例子中,我们利用len()函数和range()函数,用i作为S序列的下标来控制循环。在range函数中,分别定义上限,下限和每次循环的步长。这就和C语言中的for循环相类似了。

2. 利用enumerate(), 同时得到下标和元素

利用enumerate()函数,可以在每次循环中同时得到下标和元素:

S = 'abcdefghijk'
for (index,char) in enumerate(S):
    print index
    print char

实际上,enumerate()在每次循环中,返回的是一个包含两个元素的定值表(tuple),两个元素分别赋予index和char

3. 利用zip(), 实现并行循环

如果你多个等长的序列,然后想要每次循环时从各个序列分别取出一个元素,可以利用zip()方便地实现:

ta = [1,2,3]
tb = [9,8,7]
tc = ['a','b','c']
for (a,b,c) in zip(ta,tb,tc):
    print(a,b,c)

每次循环时,从各个序列分别从左到右取出一个元素,合并成一个tuple,然后tuple的元素赋予给a,b,c

zip()函数的功能,就是从多个列表中,依次各取出一个元素。每次取出的(来自不同列表的)元素合成一个元组,合并成的元组放入zip()返回的列表中。

zip()函数起到了聚合列表的功能。我们还可以分解该聚合后的列表,如下:

ta = [1,2,3 ]
tb = [9,8,7]

# cluster zipped
= zip(ta,tb) print(zipped)

# decompose
na, nb = zip(*zipped)
print(na, nb)

总结:

range()

enumerate()

zip()



循环对象的并不是随着Python的诞生就存在的,但它的发展迅速,特别是Python 3x的时代,从zip()或者map()的改变来看,循环对象正在成为循环的标准形式。

1. 什么是循环对象

循环对象是这样一个对象,它包含有一个next()方法(__next__()方法,在python 3x中), 这个方法的目的是进行到下一个结果,而在结束一系列结果之后,举出StopIteration错误

当一个循环结构(比如for)调用循环对象时,它就会每次循环的时候调用next()方法,直到StopIteration出现,for循环接收到,就知道循环已经结束,停止调用next()。

假设我们有一个test.txt的文件:

1234
abcd
efg

我们运行一下python命令行:

>>> f = open('test.txt')

>>> f.next()

>>> f.next()

...

不断地输入f.next(),直到最后出现StopIteration

open()返回的实际上是一个循环对象,包含有next()方法。而该next()方法每次返回的就是新的一行的内容,到达文件结尾时举出StopIteration。这样,我们相当于手工进行了循环。

自动进行的话,就是:

for line in open('test.txt'):
    print line

在这里,for结构自动调用next()方法,将该方法的返回值赋予给line。循环知道出现StopIteration的时候结束。

相对于序列,用循环对象来控制循环的好处在于:可以不用在循环还没有开始的时候,就生成每次要使用的元素。所使用的元素在循环过程中逐次生成。这样,就节省了空间,提高了效率,并提高编程的灵活性。

2. iter()函数和循环器(iterator)

从技术上来说,循环对象和for循环调用之间还有一个中间层,就是要将循环对象转换成循环器(iterator)。这一转换是通过使用iter()函数实现的。但从逻辑层面上,常常可以忽略这一层,所以循环对象和循环器常常相互指代对方。

3. 生成器(generator)

生成器的主要目的是构成一个用户自定义的循环对象。

生成器的编写方法和函数定义类似,只是在return的地方改为yield。生成器中可以有多个yield。当生成器遇到一个yield时,会暂停运行生成器,返回yield后面的值。当再次调用生成器的时候,会从刚才暂停的地方继续运行,直到下一个yield。生成器自身又构成一个循环器,每次循环使用一个yield返回的值。

下面是一个生成器:

def gen():
    a = 100
    yield a
    a = a*8
    yield a
    yield 1000

该生成器共有三个yield, 如果用作循环器时,会进行三次循环。

for i in gen():
    print i

再考虑如下一个生成器:

def gen():
    for i in range(4):
        yield i

它又可以写成生成器表达式(Generator Expression):

G = (x for x in range(4))

生成器表达式是生成器的一种简便的编写方式。读者可进一步查阅。

4. 表推导(list comprehension)

表推导是快速生成表的方法。假设我们生成表L:

L = []
for x in range(10):
    L.append(x**2)

以上产生了表L,但实际上有快捷的写法,也就是表推导的方式:

L = [x**2 for x in range(10)]

这与生成器表达式类似,只不过用的是中括号

(表推导的机制实际上是利用循环对象,有兴趣可以查阅。)

考虑下面的表推导会生成什么?

xl = [1,3,5]
yl = [9,12,13]
L  = [ x**2 for (x,y) in zip(xl,yl) if y > 10]

总结:

循环对象

生成器

表推导



参考推荐:

Python 系列教程


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值