自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(967)
  • 资源 (3)
  • 收藏
  • 关注

原创 国内的几款强大的智能—AI语言模型

强大的智能AI语言模型

2023-04-19 09:59:03 692820 101

原创 Python 测试利器:使用 pytest 高效编写和管理单元测试

本文介绍了Python测试框架pytest的核心优势与使用方法。pytest凭借简洁语法、强大插件生态和复杂测试支持,成为Python开发的事实标准。文章重点讲解了三大核心功能:参数化测试(@pytest.mark.parametrize)、Fixture管理测试资源(@pytest.fixture)和Mock隔离外部依赖。通过psycopg2集成测试实例,展示了如何利用Fixture管理数据库事务回滚,确保测试数据不污染生产环境。最后指出pytest丰富的插件生态可满足各类测试需求,如UDP协议测试等特殊

2026-01-30 14:45:00 681

原创 Python 命名空间与协程:构建高并发系统的基石

本文介绍了Python中命名空间与协程的核心概念及其在高并发系统中的应用。首先阐述了命名空间的LEGB规则及其对代码隔离的重要性,指出协程编程中应避免全局变量污染。然后详细讲解了协程的演变历程、事件循环机制和生命周期管理,通过代码示例展示了协程的并发特性。最后分析了协程编程中的常见陷阱,包括虚假并发问题和共享状态风险,并提供了线程池卸载和异步上下文管理器等解决方案。文章强调命名空间隔离与协程机制的结合是构建高效并发系统的关键。

2026-01-30 10:12:07 552

原创 告别 `print` 调试:构建生产级 Python 应用的日志系统

本文介绍了如何构建生产级Python应用的日志系统,替代传统的print调试方式。首先分析了print在生产环境中的三大缺陷:缺乏持久化、信息维度单一和难以分级过滤。然后深入讲解了Python logging模块的核心架构,包括Logger、Handler和Formatter组件的功能与配置方法,并提供了基础文件日志的代码示例。最后进阶讲解了企业级日志方案,涵盖异常追踪、耗时记录和异步日志等高阶用法,通过装饰器示例演示了如何记录函数执行时间和异常堆栈。文章旨在帮助开发者构建更专业、高效的日志系统,提升生产环

2026-01-29 16:00:00 554

原创 Python 单元测试进阶:深入掌握 unittest 框架,提升代码质量与可维护性

本文介绍了Python标准库unittest框架的核心使用方法,旨在帮助开发者构建健壮的测试体系。主要内容包括: unittest框架的核心价值:标准化、面向对象设计、丰富的断言方法和生命周期管理功能,是Python工程师必备技能。 测试生命周期管理:详细讲解setUp()、tearDown()等关键方法的使用场景,以及如何保证测试的原子性。 断言方法详解:列举了assertEqual、assertTrue、assertRaises等常用断言方法的应用场景。 高级测试技巧:重点介绍如何使用unittest.

2026-01-29 11:44:12 427

原创 Python JSON 处理最佳实践:从入门到构建健壮的容错系统

本文介绍了Python处理JSON数据的最佳实践,从基础使用到构建健壮的容错系统。首先回顾了json模块的核心功能与常见陷阱,如类型转换问题。然后深入探讨了如何通过自定义序列化器处理日期等特殊类型,以及设计容错机制应对损坏数据。针对大文件处理,推荐使用ijson库实现流式解析以优化性能。文章最后总结了构建健壮JSON处理系统的关键要素,包括输入校验、异常捕获、代码规范等,并提供了格式化输出建议。全文结合代码示例,帮助开发者提升JSON数据处理能力。

2026-01-27 18:33:57 553

原创 【Python办公】Excel 多 Sheet 智能合并工具:从需求到实现

本文介绍了一款基于Python的Excel多Sheet合并工具,通过PyQt5实现图形化界面,支持批量处理Excel文件。核心功能包括:自动扫描目录文件、表头行设置、Sheet筛选、单/多Sheet输出模式选择、附加源文件信息等。工具采用后台线程处理数据,避免界面卡顿,使用pandas-calamine引擎提升读取兼容性。文章详细说明了安装方法、功能特点、界面设计、合并逻辑以及常见问题解决方案,并提供了完整的代码实现。该工具适用于需要批量处理Excel数据的办公场景,能有效提升工作效率。

2026-01-27 15:50:18 306 1

原创 Python 魔术方法实战:深度解析 Queue 模块的模块化设计与实现

摘要 本文深入探讨了Python魔术方法在Queue模块中的应用,通过源码分析揭示了其基于threading.Condition的同步机制。文章提出标准库queue.Queue未实现__len__等魔术方法的接口权衡问题,并展示了如何通过继承扩展队列功能,包括实现__iter__支持遍历、__enter__/__exit__支持上下文管理。实战部分构建了一个增强版EnhancedQueue类,整合了类型检查、调试输出和资源自动管理等特性,演示了如何利用魔术方法构建更符合Python风格的并发数据结构。案例包

2026-01-26 19:45:17 1064

原创 Python ORM 深度解析:告别繁琐 SQL,让数据操作如丝般顺滑

在 Python Web 开发的生态中,几乎没有人能绕过数据库操作这一关。对于初学者来说,直接编写原生 SQL 语句似乎是最直接、最“掌控一切”的方式。然而,随着项目规模的扩大,原生 SQL 带来的痛点会逐渐显现,甚至成为维护的噩梦。

2026-01-26 19:40:02 787

原创 Python自动化邮件发送完全指南:从入门到精通,让你的工作更高效

摘要: 本文介绍了使用Python实现邮件自动化的核心技术,涵盖纯文本、HTML格式及带附件邮件的发送方法。通过smtplib和email库,结合SMTP协议,可高效完成日常邮件任务。文章提供详细代码示例,包括邮件配置、内容构建及发送流程,并强调安全注意事项(如使用授权码替代密码)。此外,还建议添加错误处理与重试机制以增强脚本健壮性。掌握这些技能可显著提升工作效率,适用于报表发送、系统监控等办公场景。

2026-01-25 14:15:00 1245

原创 Python 进阶必修课:彻底搞懂深浅拷贝,让你的数据处理不再“牵一发而动全身”

本文深入探讨Python中的深浅拷贝机制及其应用场景。首先通过电商购物车案例揭示直接赋值导致数据意外修改的问题,进而剖析Python的内存模型,区分可变与不可变对象。重点讲解了浅拷贝的局限性(仅复制一层结构)和深拷贝的彻底独立性(递归复制所有层级),并通过代码示例对比两者差异。最后提供决策指南,帮助开发者根据数据结构复杂度、性能需求和修改隔离要求,合理选择赋值、浅拷贝或深拷贝方案。文章特别指出深拷贝在处理循环引用时的智能机制,以及其在复杂嵌套数据结构中的不可替代性。

2026-01-25 11:45:00 1251

原创 Starlette 代码重构的艺术:用 Python 表达式风暴提升 Web 服务性能与可读性

摘要: 本文介绍了如何利用Python表达式特性重构Starlette框架的代码结构,提升Web服务性能和可读性。第一章重点讲解路由与中间件的表达式化重构,包括使用列表推导式批量生成路由对象和构建函数式中间件管道。第二章探讨异步上下文中的性能优化技巧,如使用生成器表达式实现惰性求值。文章通过代码对比展示重构前后的差异,强调将命令式代码转化为声明式表达式的优势,帮助开发者编写更简洁高效的Starlette应用。

2026-01-24 14:15:00 1278

原创 Python Token 爬虫实战:如何优雅地搞定分布式采集与反爬策略

本文介绍了如何利用Python构建基于Token认证的分布式爬虫系统。主要内容包括: 环境隔离:使用Python内置的venv工具创建虚拟环境,确保依赖隔离和项目可复现性。 Token认证处理:详细解析现代Web应用的Token认证流程,并提供Python实现方案,包括自动Token获取、刷新和请求重试机制,使用aiohttp和tenacity库构建健壮的请求客户端。 分布式架构:探讨分布式爬虫的核心要素,包括任务调度、去重、状态同步和结果收集,为后续扩展提供基础框架。 文章通过代码示例展示了如何封装带To

2026-01-24 11:45:00 1313

原创 深入理解 Python JIT:Pyjion 如何为你的 Gunicorn 应用加速?

本文介绍了如何利用Pyjion为Gunicorn应用加速,通过JIT技术提升Python性能。Pyjion作为CPython插件,可将热点代码动态编译为机器码,特别适合计算密集型场景。文章详细讲解了Pyjion的安装配置方法,包括通过Gunicorn预加载脚本实现集成,并提供了性能对比测试数据,显示在递归计算等场景下可带来100%的QPS提升。同时指出Pyjion对强类型代码优化效果更好,但也需权衡内存占用,建议在生产环境部署前充分测试。

2026-01-23 11:41:49 734

原创 深入解析 Python 3.11 版本迭代:性能飞跃与更优雅的错误处理

Python 3.11版本带来重大性能优化与功能升级:通过Faster CPython项目实现25%的平均性能提升,引入自适应解释器、零成本异常处理等底层优化;创新性地推出Exception Groups和Except*语法,显著改进并发错误处理;新增TypeVarTuple支持泛型编程,增强类型系统灵活性。这些改进使Python在保持动态特性的同时,提升了工程化能力和执行效率,为科学计算、Web开发等领域带来实质性提升。

2026-01-23 11:25:58 633

原创 Python 代码重构的艺术:精通 `from` 导入,提升代码质量与可维护性

Python代码重构:优化from导入提升可维护性 本文探讨Python中from导入的常见问题与优化策略: 问题分析 from module import *污染命名空间,导致变量来源不明确 循环导入引发ImportError,暴露架构设计缺陷 最佳实践 类/函数导入应保持语义精确,避免过长导入列表 优先使用绝对导入,提升代码可读性和可移植性 通过__all__控制模块暴露接口 高级技巧 使用延迟导入优化启动性能 利用TYPE_CHECKING解决类型提示的循环依赖 通过规范导入方式,可显著提升代码可维护

2026-01-22 22:45:00 569

原创 Python 健壮性进阶:精通 TCP/IP 网络编程与 requirements.txt 的最佳实践

本文介绍了Python健壮性编程的核心实践,重点围绕TCP/IP网络编程和依赖管理展开。文章分为三部分:首先强调requirements.txt规范管理的重要性,提出使用pip-tools和Docker验证的最佳实践;其次深入分析Socket编程的健壮性陷阱,给出多路复用、异常处理和心跳机制的设计方案;最后通过构建TCP转发代理的实战案例,演示如何实现自动重连和异常处理。全文贯穿"最小化依赖+完善异常处理"的健壮性理念,为构建稳定可靠的Python网络服务提供了系统指导。

2026-01-22 18:21:02 861

原创 Python 对象的“Excel 之旅”:使用 openpyxl 高效读写与封装实战

本文介绍了如何使用openpyxl库实现Python对象与Excel表格的高效映射。通过dataclass定义数据模型,并设计ExcelMapper类作为对象与表格的适配器,实现自动化的数据读写。该方法避免了传统单元格索引操作的繁琐,支持批量数据处理,同时保持代码的可维护性。文章详细讲解了基础操作、样式控制以及完整的对象映射实现流程,为Python办公自动化提供了高效解决方案。

2026-01-21 21:00:00 1660

原创 【Python爬虫】 Python + PyQt5 打造高颜值 B 站视频下载器

本文介绍了一个基于Python+PyQt5开发的B站视频下载工具,具备现代化UI界面、多线程下载、扫码登录和高清画质选择等功能。通过yt-dlp实现视频解析下载,使用qrcode生成登录二维码,并利用imageio-ffmpeg自动处理FFmpeg依赖。文章详细讲解了界面设计、多线程处理、扫码登录实现等核心功能,并提供了项目运行方法。该工具解决了市面下载器界面简陋、广告多等问题,支持1080P+/4K画质下载,适合B站用户收藏高清视频使用。

2026-01-21 16:43:30 654

原创 【Python办公】用 PyQt5 打造一个「JSON 快速查看器」

本文介绍了一个基于PyQt5开发的JSON快速查看器工具。该工具支持拖拽或选择JSON文件,通过输入KEY(支持点语法和列表下标)快速查询对应值。文章详细拆解了实现过程,包括需求分析、项目结构、UI设计(窗口样式、布局控件)和核心功能代码。工具界面简洁美观,包含文件路径显示区、KEY输入区和结果展示区,适合日常调试JSON数据使用。提供了完整的代码实现思路和关键代码片段,并附有GitHub源码链接。

2026-01-20 11:45:00 848

原创 Python Web 自动化神器:Selenium 超详细入门教程 (Zero to Hero)

本文是Selenium自动化测试工具的详细入门教程,适合零基础学习者。主要内容包括:Selenium简介及优势、环境搭建步骤(Python安装、Selenium库安装和浏览器驱动配置)、快速上手第一个自动化脚本演示、核心元素定位方法(8种常用方式对比)、元素交互操作技巧、三种等待策略详解(强制/隐式/显式等待)以及实战演练(完整自动化搜索并截图流程)。教程从基础到进阶,帮助读者掌握Web自动化测试的核心技能,提高工作效率。

2026-01-20 10:00:12 1082

原创 【Python】基于 Flask + SQLite 的个人代码片段管理工具-利用Github仓库进行储存

本文介绍了一个基于Flask+SQLite开发的个人代码片段管理工具,具有以下核心功能:无限级目录树分类、代码高亮编辑、标签系统、全文搜索和收藏夹。文章详细讲解了技术栈选择、数据库设计(包含目录表、代码表、标签表和关联表)以及关键代码实现,包括后端API设计、数据库操作封装和前端编辑器集成。该项目支持本地快速部署,未来计划扩展Markdown预览、版本控制等功能。适合开发者管理日常代码片段,提高工作效率。

2026-01-19 14:43:58 800

原创 用 PyQt5 做一个「批量目录重命名」工具,并打包成带图标的 EXE

本文介绍了使用PyQt5开发的批量目录重命名工具,支持添加前缀/后缀、替换/删除子串等操作,并能叠加多个规则按顺序执行。文章详细讲解了工具的功能设计(从单操作升级为规则流水线)和界面布局(目标目录选择、规则配置、预览执行三部分),展示了如何通过PyQt5实现图形界面,并最终打包成带图标的可执行文件。该工具能有效解决批量修改目录名的重复工作问题,提升文件管理效率。

2026-01-19 13:51:27 829

原创 Python 爬虫实战:如何优雅地处理带有 JWT 认证的接口提交

本文介绍了如何利用Python爬取带有JWT认证的API接口数据。首先解析了JWT的组成结构(Header、Payload、Signature)及其认证机制,说明爬虫需要携带Token才能访问受保护接口。随后通过实战演示了使用requests库模拟登录获取Token的过程,包括分析API请求、处理响应数据等步骤。文章还指出了验证码、CSRF Token等常见登录陷阱的应对策略,并详细讲解了如何将获取的Token注入后续请求Header(Authorization字段)以实现认证访问。最后提供了完整的Pyth

2026-01-19 09:52:58 1210

原创 Python 三元运算符详解:用一行代码搞定条件判断

本文详细介绍了Python中的三元运算符(条件表达式),这是一种简洁的条件判断语法结构。主要内容包括:三元运算符的基本语法value_if_true if condition else value_if_false,通过多个实例演示如何将传统if-else语句转换为三元运算符写法,以及嵌套三元运算符的使用场景和注意事项。文章特别强调了三元运算符的优势(代码简洁)和局限性(可读性下降),建议在简单条件判断时使用,复杂逻辑仍应选择传统if-else结构。最后提供了练习题帮助读者巩固所学知识,并提醒遵循KISS原

2026-01-18 15:14:11 847

原创 别再只用 return 了!Python 迭代器神器 `yield` 与递归的完美交响

本文介绍了Python中yield与递归的完美结合,通过生成器实现高效内存管理。传统递归存在深度限制和内存问题,而yield能暂停函数状态,实现惰性求值。核心技巧是使用yield from委派生成任务,在二叉树遍历、全排列等场景中显著降低内存占用。文章还展示了如何用显式堆栈替代递归堆栈,处理深度嵌套数据。这种组合既保持递归的简洁性,又具备迭代器的性能优势,是处理大数据量的理想方案。

2026-01-18 14:15:00 537

原创 告别等待:深入理解 Python threading 与自动化测试的完美结合

本文介绍了如何利用Python的threading模块提升自动化测试效率。通过多线程并发执行测试用例,可以显著减少总执行时间。文章首先分析了顺序执行的痛点,如线性增长的测试时间和低资源利用率。然后详细讲解了Thread类的两种使用方式,并提供了一个封装好的TestExecutor类实现多线程测试执行器。最后强调了线程同步的重要性,展示了使用Lock保护共享资源的示例。通过合理应用多线程技术,开发者可以将自动化测试效率提升5-10倍,同时确保线程安全。(149字)

2026-01-18 11:45:00 1307

原创 Python datetime 模块深度指南:从入门到精通,精准掌控时间流转

本文深入讲解Python的datetime模块,涵盖日期时间处理的完整知识体系。首先解析datetime核心类:date(日期)、time(时间)、datetime(日期时间)和timedelta(时间差)的功能与用法。其次详细介绍时间格式化(strftime)与解析(strptime)的方法,提供常用格式代码表。针对时区处理难题,对比分析pytz和zoneinfo两种解决方案。最后通过计算工作日等实战案例,展示datetime模块的实际应用。全文配有详细代码示例,帮助开发者全面掌握Python时间处理技巧

2026-01-17 14:15:00 1224 1

原创 Python 函数进阶:精通默认参数、Wheel 包与 Docstring 的艺术

本文介绍了Python开发的三个进阶技巧:1)避免使用可变对象作为默认参数,推荐用None作为哨兵值;2)Wheel包格式的优势,它能加速安装过程并解决编译依赖问题;3)Docstring编写规范,比较了Google、NumPy和reStructuredText三种主流风格。文章通过实例代码展示了每个技巧的具体应用场景和最佳实践,帮助开发者提升代码质量和开发效率。

2026-01-17 11:45:00 763

原创 Python 异步编程深度解析:从生成器到 Asyncio 的演进之路

本文系统梳理了Python异步编程的演进历程。从早期利用生成器模拟异步的"青铜时代",到Python 3.5引入async/await语法的标准化阶段,再到如今高性能异步生态的成熟。文章通过生成器伪装异步、async/await语法解析、同步与异步性能对比等核心内容,完整展现了Python异步编程的技术脉络。特别强调了事件循环机制的关键作用,并通过HTTP请求案例验证了异步编程在I/O密集型任务中的显著性能优势(10秒vs1.2秒)。最后指出生成器以异步生成器形式在数据流处理中的创新应用

2026-01-16 18:15:00 634

原创 Python 路径操作终极指南:告别 os.path,拥抱现代化的 pathlib

Python 3.4 引入的 pathlib 模块,正是为了解决这一痛点而生。它采用面向对象的设计,将路径视为对象而非简单的字符串,极大地提升了代码的可读性和健壮性。本文将带你深入探索 pathlib 的强大功能,从基础用法到高级技巧,助你彻底告别繁琐的 os.path 时代。

2026-01-16 13:03:45 610

原创 告别卡顿与等待:Python 线程池并发爬虫实战 (Selenium + CSV)

本篇文章将带你从零开始,利用 Python 的 concurrent.futures 线程池技术,配合 Selenium 进行并发爬取,并将结果高效写入 CSV 文件。我们将通过实战代码,将原本耗时数小时的任务压缩到十几分钟内完成。

2026-01-15 14:15:00 1868

原创 告别 `print` 大法:精通 Python `pdb` 调试,像大神一样写代码

《告别print大法:精通Python pdb调试》是一篇介绍Python标准库调试工具pdb的技术文章。文章首先指出print调试法的局限性,如代码污染、信息过载等问题,随后详细讲解pdb的核心功能,包括三种启动方式(硬编码断点、异常启动、事后调试)、6个核心命令(n/s/c/l/p/pp)的使用方法,并通过阶乘递归案例演示实战应用。进阶部分介绍了pdb的隐藏技巧(!命令执行、interact交互模式)、与IDE调试器的互补关系,以及ipdb和web-pdb等增强工具。该文旨在帮助开发者掌握专业调试技能,

2026-01-15 12:15:00 1199

原创 解放双手:使用 PyAutoGUI 实现桌面自动化,开启 Python 效率革命

在现代办公和开发环境中,我们常常被大量重复性的桌面操作所困扰:每天早上打开固定的软件、在不同窗口间反复复制粘贴数据、批量处理图片或文件名、或是为了监控某个网页状态而不断刷新。这些任务虽然单次执行耗时不多,但日积月累却会吞噬我们大量的宝贵时间。

2026-01-14 14:15:00 685

原创 Python with 正则表达式与集合推导:高效数据清洗的“黄金搭档”

本文介绍了Python数据清洗中的三大核心技术:with语句实现安全的资源管理,正则表达式用于精准文本匹配,集合推导实现高效去重。通过实际案例展示了如何用with优雅处理文件操作,利用正则表达式提取日志中的关键信息,以及使用集合推导快速去重统计独立访客IP。最后整合这些技术构建了一个完整的数据清洗管道,从日志文件中提取并清洗错误邮箱地址。这些方法组合使用可显著提升数据处理的效率和代码质量。

2026-01-14 11:45:00 1290

原创 玩转 macOS 终端:如何用 Python 的 `try` 机制打造坚不可摧的自动化脚本

在 Python 的世界里,字符串拼接和格式化几乎是每个开发者每天都要面对的“老朋友”。然而,这位老朋友的“脾气”却随着 Python 版本的迭代发生了巨大的变化。如果你还在使用 % 操作符或者 .format() 方法,那么是时候了解一下 Python 3.6 引入的“超级武器”——f-string(格式化字符串字面值)了。

2026-01-13 14:45:00 700

原创 Python 字符串格式化进化论:为什么 f-string 是你不可错过的技术红利?

本文介绍了Python 3.6引入的f-string字符串格式化技术的优势和应用。首先对比了传统.format()方法与f-string在代码可读性上的差异,强调f-string的"所见即所得"特性降低了维护成本。其次详细讲解了f-string的高阶功能,包括表达式计算、函数调用和格式化控制(数字精度、字符串对齐等),使其成为轻量级模板引擎。最后针对IronPython等特殊环境,分析了f-string的兼容性问题,并提供了替代方案建议。文章指出f-string通过简化语法、增强可读性和

2026-01-13 10:32:17 651

原创 Python 3.8 新特性:深入理解并掌握赋值表达式(The Walrus Operator)

本文详细介绍了Python 3.8引入的赋值表达式(海象运算符:=)的特性与应用。文章首先解释了赋值表达式与传统赋值语句的区别,指出其允许在表达式内部进行变量赋值的优势。通过多个典型场景(如while循环、列表推导式、if分支等)的代码对比,展示了如何利用该特性减少重复计算、简化代码结构。同时强调了使用时需注意的作用域问题,包括列表推导式的独立作用域和普通语句中的变量泄漏风险。最后指出应避免滥用该特性,保持代码可读性。赋值表达式是Python向表达式化编程发展的重要一步,合理使用可显著提升代码质量。

2026-01-12 14:15:00 1648

原创 Python中的深浅拷贝:彻底搞懂`copy`模块,不再为引用问题而头疼

本文深入解析Python中的深浅拷贝问题。通过实例演示赋值、浅拷贝和深拷贝的区别:赋值只是创建新引用,浅拷贝复制外层容器但共享内层对象引用,深拷贝则递归创建完全独立的对象副本。文章剖析了字典.copy()方法的误区,并给出最佳实践建议:优先考虑引用,扁平结构用浅拷贝,复杂嵌套用深拷贝。掌握这些概念对编写无副作用的健壮代码至关重要,能有效避免因对象引用共享导致的意外数据修改问题。

2026-01-12 11:45:00 800

原创 pyproject.toml 终极指南:重塑你的 Python 项目配置

本文介绍了Python项目配置文件pyproject.toml的核心功能和使用方法。作为Python现代标准化配置文件,pyproject.toml解决了项目配置碎片化问题,统一了构建系统标准(PEP 518 & 517)并实现了配置集中化。文章详细解析了其核心结构,包括构建系统声明、项目元数据定义和工具配置,并提供了创建现代Python项目的实战演练步骤。同时指出了常见误区,如混淆构建后端、TOML语法错误和工具不支持等问题。最后推荐使用Hatch、Poetry等工具自动管理pyproject.t

2026-01-12 11:03:05 1053

顺丰运单号自动匹配运单图片

功能概览 选择待匹配含有运单号的 Excel(默认表头行 1,可调整)。 读取表头并填充“运单号所在列”下拉框。 选择含有运单号图片的目录(按文件名不含扩展名作为运单号)。 选择插入图片的列,或者默认“最后一列”。 选择保存路径(默认名称为原 Excel 文件名后加 _结果.xlsx)。 点击“开始匹配”,过程日志实时显示,完成后弹窗提示“匹配完成”。 快速开始 安装依赖(Python 3.8+ 建议): pip install pyqt5 openpyxl 启动界面: python SF运单图片通用插图_GUI.py 在界面中依次完成: 选择 Excel 文件,确认“表头行(默认1)”。 选择“运单号所在列”。 选择“运单号图片目录”。 选择“插入图片的列”(或保持默认“最后一列”)。 选择“保存路径”。 点击“开始匹配”,观察“日志”,完成后弹窗提示。 提示:图片名称应与运单号一致(不含扩展名)。例如:SF12345.png、SF12345.jpg,都会被识别为 SF12345。

2025-11-07

Python-pdf转Word

- 日常办公中,常需要将 PDF 转为可编辑的 Word(`.docx`)。 - 在线网站存在文件体积限制、隐私风险、速度慢等问题。 - 目标:做一个本地、易用、可批量转换的桌面小工具。 - Python 3.8+ - PyQt5:构建桌面 GUI - pdf2docx:将 PDF 转换为 `.docx` - QThread:后台执行,避免界面卡死 - 拖拽添加:支持将文件或文件夹拖拽到窗口 - 多选与文件夹扫描:一次性批量添加 PDF - 进度条与状态提示:实时了解转换进度 - 批量转换:逐个生成同名 `.docx` 文件到原目录

2025-11-25

Excel多Sheet透视

前言 这是一篇关于将一个“带大量默认选项”的透视工具,重构为“零默认、更可控”的通用工具的技术笔记。它记录了目标、设计原则、关键改动、实现细节与后续扩展方向,供团队与后来者快速理解与继续迭代。 背景与问题 原工具在多个位置采用了“默认选择/自动操作”,例如:自动勾选所有 Sheet、自动选择当前 Sheet、自动推断分组列与聚合字段、加载后自动执行透视等。 在数据结构不稳定、表头多变或业务场景多样的情况下,这些默认行为会导致: 用户对结果不确定(是否按预期分组/聚合?是否自动修改了列?)。 难以在不同客户/不同账单格式之间稳定复用。 排查错误变得困难(“默认”隐藏了真实的操作路径)。 目标 取消所有默认选择,让工具成为通用的、可控的透视器。 明确化交互流程:用户先选择 Sheet、再选择分组与聚合、最后执行透视与导出。 保留原有的便利性(例如自动列出数值列供选择),但不再自动代替用户做决定。 设计原则 可发现性:界面文案明确告诉用户“需要选择哪些内容”。 最小惊讶:不自动透视、不自动勾选、不自动选聚合方式,避免超出用户预期的隐式操作。 渐进增强:保留辅助函数(如数值列识别、列名规范化),但仅作为候选信息展示。 关键改动总览 左侧 Sheet 列表:默认不勾选任何项。 当前 Sheet 下拉:不设置默认值,必须手动选择。 分组列:不再自动勾选任何列,初始为空。 聚合字段:不再自动选择第一数值列,初始为空(sum 需手动指定)。 聚合方式:不设默认值(sum/count),未选择时给出明确提示。 加载后不再自动透视;状态栏提醒用户按照流程操作。 列顺序:取消“仓库代码/二类费用项”的优先排序,按原始列顺序展示。 UI 文案更通用:强调“请选择”,弱化领域特定词汇。

2025-11-12

Python-按列拆分Excel界面版工具

前言 这篇文章记录了把原本的 Tkinter 版本重构为 PyQt5 桌面应用的全过程,覆盖设计思路、功能实现、使用方法与后续规划。最终效果是一个更易用、更稳定且支持拖拽、文件夹批处理的按列拆分 Excel 工具。 背景与目标 需求从“按工作表拆分”转向“按列值拆分”,需支持多列组合键,文件名以_连接。 支持自动输入表头行(从 1 开始),加载列名后多选列。 具备“开始拆分”操作按钮与实时进度/状态反馈。 用户希望更现代的 UI、拖拽体验,以及对“单文件/文件夹”的灵活选择。 为什么选择 PyQt5 更丰富的桌面控件与更好的视觉表现,窗口与布局更灵活。 原生支持拖拽文件/文件夹、消息框、进度条等交互。 线程模型(QThread)更易于实现后台耗时任务与 UI 不阻塞。 功能亮点 单文件/文件夹两种模式:可批量处理一个文件夹中的多个 Excel。 拖拽支持:将 Excel 文件或文件夹拖到中间虚线框即可。 Sheet 加载:自动读取并列出 Sheet 名称,选择目标 Sheet 进行拆分。 表头行输入:从 1 开始,确定列名所在行;列名为空会自动命名为“列N”。 多列组合分组:多选列后按值用_拼接,作为分组键与导出文件名后缀。 进度与状态:实时显示导出进度、每个分组的导出状态与错误信息。 容错处理: 缺失目标 Sheet 的文件会跳过,并在状态中提示。 文件名非法字符自动替换为_;空值统一替换为“空”。

2025-11-10

Html模板炫酷对称绘画工具:在浏览器里创作镜像艺术

核心亮点 灵活对称绘画:2–6 份分割,实时镜像,一处绘画多处同步显示 绘画工具完善: 画笔(粗细 1–20px,可选 10 色预设与任意自定义颜色) 橡皮擦(精准擦除) 渐变笔(自动递进色相,绘制丝滑彩虹轨迹) 炫光效果(柔和发光,提升视觉冲击) 流畅的交互体验: 统一 Pointer 事件(鼠标/触摸),点击即出笔 禁用触控滚动(touch-action: none),移动端直接在画布上创作 一键管理作品:导出高清 PNG、快速清空画布、操作提示气泡 科技蓝视觉:渐变背景、发光边框、清晰分割线、响应式布局 快速开始 最快方式:直接双击 index.html 打开浏览器即可使用。 本地服务器(便于无端口号访问): python -m http.server 80 然后访问 http://localhost/ 如需指定端口:python -m http.server 5173 → http://localhost:5173/ Node 方案:npx http-server -p 5173 -c-1 基本操作 在左侧选择工具:画笔 / 橡皮擦 / 渐变笔 设置颜色(预设或自定义)、画笔粗细、炫光开关 选择对称份数(2–6) 在右侧画布绘制:按下即出笔,拖动即可在所有扇区镜像绘制 管理作品:保存作品 导出 PNG;清空画布 重新开始

2025-11-05

Html网页版词云图生成器

在线预览:https://ikunkun.blog.csdn.net/article/details/154435740?spm=1011.2415.3001.5331 在写作、演示、课程讲解或数据可视化中,“词云图”是非常有用的视觉元素。本文分享一个纯前端的词云图生成网站:无需安装、离线可用,粘贴文本或上传文档即可生成,并支持丰富的样式定制与一键保存 PNG。 亮点特性 输入方式灵活: 直接输入/粘贴文本 上传 .txt 或 .docx 文档(自动解析纯文本) 参数可调:宽度、高度、词条数、字体、颜色主题、背景颜色 中文友好:内置简易中文分词策略(二字词 bigrams)+默认停用词表 可视化增强:右侧实时预览,支持一键保存为 PNG 样式高级设置:形状、方向、旋转比例、最大旋转角度、词条间距、画布内边距、字重、颜色模式、阴影与描边 强兼容与离线保障: 自动尝试多种编码读取 .txt(UTF-8/GB18030/GBK/Big5),避免乱码 在外部库不可用时,自动启用降级渲染(canvas 螺旋布局 + 碰撞避免),保证可生成

2025-11-05

Html静态电商后台管理大屏看板模板-赛博博客风格

预览链接:https://ikunkun.blog.csdn.net/article/details/154353274?spm=1011.2415.3001.5331 项目特色 赛博朋克美学设计 - 霓虹色彩、发光效果、科技感十足 样化图表展示 - 支持折线图、柱状图、饼图切换 交互式世界地图 - 实时显示全球数据分布 响应式布局 - 适配不同屏幕尺寸 高性能渲染 - 流畅的动画和交互体验 服务器兼容 - 支持各种部署环境 技术栈 前端技术 HTML5 - 语义化结构 CSS3 - 高级样式和动画 JavaScript ES6+ - 现代化交互逻辑 Chart.js - 图表渲染引擎 ECharts - 地图可视化 设计系统 色彩方案 - 霓虹蓝、紫、粉配色 字体 - Orbitron 科技感字体 动效 - CSS3 动画和过渡 布局 - CSS Grid 响应式网格

2025-11-03

Python工具-多层目录文件删除

核心功能 支持拖拽目录到应用程序 递归删除目录中的所有文件 可选择是否删除空的子目录 提供删除进度显示 支持取消删除操作 安全性要求 删除前必须确认 详细的操作日志 异常处理机制 用户体验 现代化的UI设计 直观的操作流程 实时反馈 技术选型 PyQt5 是我们的首选框架,原因如下: 成熟稳定的GUI框架 丰富的组件库 优秀的拖拽支持 跨平台兼容性 多线程处理 确保UI不会在删除大量文件时卡顿。

2025-11-03

Html静态电商后台管理大屏看板模板

源代码:https://ikunkun.blog.csdn.net/article/details/154341091?spm=1011.2415.3001.5331 主要目标 现代化视觉体验:采用当前流行的深色主题设计 提升可读性:优化文本对比度,确保信息清晰可见 品牌一致性:建立统一的色彩体系和视觉语言 用户体验优化:增强交互反馈和视觉层次 设计原则 可访问性优先:确保所有用户都能清晰阅读内容 视觉层次清晰:通过颜色和对比度建立信息层级 品牌色系统一:使用一致的色彩语言 现代化美学:符合当前设计趋势 技术实现 核心技术栈 HTML5:语义化结构 CSS3:现代样式和动画 Vue.js 3:响应式数据绑定 ECharts:数据可视化图表

2025-11-03

python-压缩包不解压提取顺丰单号文件(支持分卷压缩)

源代码:https://ikunkun.blog.csdn.net/article/details/154191297?spm=1011.2415.3001.5331 在日常工作中,我们经常遇到这样的场景:收到一个包含大量文件的压缩包,但只需要提取其中与特定顺丰快递单号相关的文件。传统的做法是解压整个压缩包,然后手动查找目标文件,这不仅耗时耗力,还会占用大量磁盘空间。 为了解决这个痛点,我开发了这款**压缩包智能提取工具**,它能够在不解压整个压缩包的情况下,精准提取与顺丰单号匹配的文件。 - **无需全解压**:直接从压缩包中提取目标文件,节省时间和磁盘空间 - **智能匹配**:基于顺丰单号进行文件名匹配,支持多种匹配模式 - **批量处理**:支持同时处理多个压缩包文件 - **ZIP格式**:完全支持,使用Python内置zipfile库 - **RAR格式**:支持RAR4和RAR5格式 - **7Z格式**:支持7-Zip压缩格式 - **拖拽操作**:支持多文件同时拖拽 - **直观UI**:基于PyQt5的现代化图形界面 - **实时反馈**:进度条和日志显示,操作状态一目了然 - **手动输入**:直接在界面中输入顺丰单号 - **Excel导入**:从Excel文件批量导入单号(支持A列读取) - **多单号处理**:支持同时处理多个快递单号

2025-10-31

Python-从文件名中提取顺丰运单号

个基于PyQt5的图形界面工具,用于从文件中提取SF开头的15位运单号,并支持导出为Excel格式。 ## 功能特性 - **多种文件选择方式**:支持选择单个文件、多个文件或整个目录 - **拖拽支持**:直接拖拽文件或文件夹到窗口即可添加 - **智能运单号识别**:自动识别SF开头的15位运单号(格式:SF + 13位数字) - **双重提取模式**:同时从文件名和文件内容中提取运单号 - **结果展示**:在表格中清晰展示提取的运单号 - **Excel导出**:一键导出结果为Excel文件 - **多线程处理**:后台处理大量文件,界面不卡顿 - **进度显示**:实时显示处理进度

2025-10-31

【Python办公】Excel批量提取组合图片(多张图片组合)

源代码:https://ikunkun.blog.csdn.net/article/details/154119852?spm=1011.2415.3001.5331 在日常工作中,我们经常会遇到需要从Excel文件中提取图片的需求。特别是当Excel中包含大量组合图片时,手动一张张保存不仅效率低下,还容易出错。为了解决这个痛点,我开发了一款专门的Excel图片提取与合并工具。 工具特色 核心功能 智能图片提取:自动识别Excel中的浮动图片和组合图片 精准定位:根据图片在Excel中的单元格位置进行分类存储 横向合并:将同一位置的多张图片自动合并为一张 友好界面:基于Tkinter的图形化界面,操作简单直观 技术亮点 支持XLSX格式文件的深度解析 智能识别组合图片(xdr:grpSp) 自动建立图片ID与文件名的映射关系 支持多种图片格式(PNG、JPG、JPEG、GIF、BMP)

2025-10-30

【Python办公】Excel和csv通用按列拆分工具

源代码:https://ikunkun.blog.csdn.net/article/details/154128679?spm=1011.2415.3001.5331 在日常数据处理工作中,我们经常遇到需要将大型CSV或Excel文件按照某些条件进行拆分的需求。比如将全国销售数据按地区拆分,或者将用户数据按部门分类等。手动处理这些任务不仅耗时,还容易出错。 今天,我将分享如何使用Python和Tkinter开发一个功能强大、界面友好的文件拆分工具,让数据处理变得轻松高效。 数据分析师:需要将大型数据集按维度拆分进行分析 企业管理:将员工数据按部门、地区等维度分发 销售团队:将销售数据按区域、产品线拆分 项目管理:将项目数据按阶段、负责人拆分 核心需求 多格式支持:支持CSV和Excel文件格式 灵活拆分:可按任意列进行数据分组拆分 行数控制:支持设置每个拆分文件的最大行数 格式选择:输出文件可选择CSV或Excel格式 用户友好:图形界面操作,无需编程基础

2025-10-30

PythonPyQt5打造一款Python代码行数统计工具

作为一名开发者,你是否经常需要统计项目中的代码行数?是否厌倦了使用命令行工具或者在线工具的繁琐操作?今天,我将分享如何使用PyQt5开发一款功能强大、界面美观的Python代码行数统计工具。 项目背景 在日常开发中,我们经常需要: 统计项目的代码规模 分析代码质量(代码行vs注释行比例) 生成项目报告 快速了解项目结构 传统的解决方案往往存在以下问题: 命令行工具操作复杂 在线工具需要上传代码(安全隐患) 功能单一,缺乏可视化 不支持批量处理

2025-10-24

Python官方安装包下载器,显示所有的python版本,一键下载

在Python开发过程中,我们经常需要下载不同版本的Python安装包。虽然可以直接访问Python官网,但对于需要频繁下载或管理多个Python版本的开发者来说,一个专门的下载工具会更加高效。本项目就是为了解决这个痛点而诞生的。 项目特色: 官方风格设计 - 完美复刻Python官网的视觉风格 完整中文界面 - 为中文用户优化的本地化体验 逐步加载显示 - 优雅的版本信息加载动画 丰富版本支持 - 涵盖Python 3.8-3.14的完整版本系列 智能筛选功能 - 按版本系列和架构快速筛选 详细版本信息 - 显示文件大小、发布日期、版本状态等

2025-10-23

Python办公-批量文件自定义重命名

代码:https://ikunkun.blog.csdn.net/article/details/153738731?spm=1011.2415.3001.5331 在日常工作中,我们经常需要批量处理文件名,特别是那些按照特定规则命名的文件。传统的手动重命名方式效率低下,而现有的批量重命名工具往往功能复杂或不够灵活。今天,我想分享一个用Python和Tkinter开发的文件重命名工具的设计思路和实现过程

2025-10-22

Python程序打包工具

在Python开发的世界里,程序打包一直是一个让开发者头疼的问题。从环境配置到依赖管理,从图标处理到最终的exe生成,每一个环节都可能成为绊脚石。今天,我想和大家分享一个项目的开发历程——一个功能完备的Python程序打包器,它不仅解决了打包问题,更是一个完整的Python环境管理解决方案。 解决方案的设计思路 基于这些痛点,我们的解决方案设计了以下核心理念: 可视化操作 - 告别复杂的命令行 一站式服务 - 从环境管理到程序打包的完整流程 智能化处理 - 自动检测、自动转换、自动优化 安全可靠 - 完善的错误处理和用户确认机制

2025-10-14

python-csv转Excel界面工具

核心特性 拖拽式操作:支持直接拖拽CSV文件或包含CSV的文件夹 智能扫描:自动递归扫描目录下所有CSV文件 分块处理:按指定行数将大型CSV分割为多个Excel文件 编码兼容:自动尝试多种编码格式(UTF-8、GBK等) 后台处理:多线程处理,界面响应流畅 进度跟踪:实时显示处理进度和详细日志 设置持久化:记住用户的输出目录和分块设置 整体布局 应用采用现代化的分组卡片设计,主要包含以下区域: 标题区域:显示工具名称和作者信息 文件来源:文件选择和拖拽区域 选项设置:分块行数和输出目录配置 进度与操作:转换进度条和操作按钮 运行日志:详细的处理过程输出 视觉特色 统一主题:浅色背景配合蓝色主色调 圆角设计:所有控件采用圆角样式,视觉更柔和 图标按钮:使用Emoji图标增强按钮识别度 响应式布局:支持窗口大小调整 性能优化策略 流式处理:使用pandas的chunksize避免大文件内存问题 多线程:UI线程与处理线程分离,保持界面响应 批量操作:减少频繁的磁盘I/O操作 智能编码:按常用编码优先级尝试,减少失败重试

2025-10-11

Python实现图片形状转换器

多种形状支持 圆形:经典的圆形头像效果 椭圆形:优雅的椭圆形状 三角形:现代感十足的三角形 五角星:充满活力的星形 心形:浪漫的爱心形状 六边形:时尚的六边形设计 便捷的操作方式 拖拽加载:直接将图片拖拽到界面即可加载 文件选择:点击界面选择本地图片文件 剪贴板粘贴:支持从剪贴板直接粘贴图片 灵活的保存选项 支持PNG格式(保留透明背景) 支持JPEG格式(自动添加白色背景) 智能文件命名

2025-10-10

Python-批量图片转PDF

在日常工作和学习中,我们经常需要将多张图片整理成PDF文档,比如扫描的文档、截图、照片等。虽然市面上有很多在线工具,但往往存在文件大小限制、隐私安全问题或者功能不够灵活等问题。因此,我决定开发一个本地化的图片转PDF工具,既保证数据安全,又能提供良好的用户体验。 核心功能 直观的拖拽操作:支持直接拖拽图片文件或文件夹到程序窗口 智能文件选择:一个按钮同时支持选择单个/多个文件或整个文件夹 灵活的页面配置:可设置每页PDF包含的图片数量 广泛的格式支持:支持JPG、PNG、BMP、TIFF、GIF等主流图片格式 现代化界面设计:采用扁平化设计风格,界面简洁美观 多线程处理:转换过程在后台进行,不阻塞用户界面操作 实时进度反馈:显示转换进度和详细状态信息

2025-09-28

python-Excel多sheet合并工具

在数据处理场景中,企业和个人经常需要将多个 Excel 文件、多张 Sheet 的数据统一合并,形成便于分析的汇总表。本工具以“简单易用、稳定高效”为目标,提供批量扫描、筛选 Sheet、单/多 Sheet 输出、源信息附加、进度与日志等完整功能,并通过后台线程保证界面流畅不阻塞。

2026-01-27

python-双球色随机工具生成器

随机生成:一键生成5组双色球号码 手动输入:支持用户自定义号码输入 结果管理:清空、保存、查看历史记录 数据验证:自动验证号码范围和重复性

2026-01-22

Python-json快速查看器

## 一、需求与效果 **需求非常简单:** - 支持从文件拖拽或文件选择框加载 JSON 文件 - 输入 KEY,快速显示对应的值 - KEY 支持「点语法」和列表下标: - `name` - `user.name` - `items.0.id` - 界面要尽量简洁,美观,适合日常调试 JSON 时快速使用 **最终效果:** - 顶部标题 + 提示语,说明工具用途和操作方式 - 中间一行显示当前 JSON 文件路径 + 打开按钮 - 一行 KEY 输入 + 查询按钮 - 下方大区域显示查询结果(支持格式化 JSON) - 底部状态栏显示操作结果提示(成功 / 失败)

2026-01-19

Python-批量文件夹(目录)修改名称

目录整理是一个非常常见但又枯燥的工作: 比如下载了一堆带前缀/后缀的文件夹、备份目录前面都想加上日期、把目录名中的空格统一改成下划线……手工一个个改,很容易改到崩溃。 这篇文章记录我用 **PyQt5** 做了一个图形界面的小工具: 支持对某个目录下所有子目录名进行 **批量重命名**,并且可以: - 前面添加(前缀) - 后面添加(后缀) - 替换某个子串 - 删除某个子串 更重要的是:这些操作可以 **叠加使用**,按顺序从上到下执行。 最后再用 **PyInstaller** 打包成带自定义图标的单文件 `renamedir.exe`,方便在任何 Windows 上直接双击使用。

2026-01-19

Python-Excel转Json2026版本

这个工具主要解决了以下痛点: 多文件处理:支持直接拖拽多个文件或文件夹进行批量转换。 可视化配置:无需修改代码,直接在界面上勾选作为 Key 或 Value 的列。 字段映射:支持将 Excel 列名重命名为 JSON 中的新 Key。 数据聚合:对于数值型字段,支持自动累加(Accumulate)操作。 高性能:使用 Rust 编写的 python-calamine 库,读取速度远超传统库。

2025-12-25

Python办公-多目录csv或Excel按某列透视

这个工具的主要功能包括: 拖拽式操作:支持直接将文件夹拖拽到软件界面中,自动识别其中的 .xlsx 和 .csv 文件。 智能表头识别:自动读取第一个文件的表头供用户选择“金额”列(或其他数值列)。 表头编辑功能:如果文件表头不规范,支持手动编辑映射,确保数据读取准确。 数据自动清洗:自动剔除原文件中包含“合计”字样的行和列,避免重复计算。 多线程处理:使用独立线程进行文件读取和计算,确保界面操作流畅,不会出现卡顿。 实时进度反馈:在分析过程中实时显示正在处理的文件路径。 结果导出:支持将分析结果(目录、文件名、金额汇总)导出为新的 Excel 文件。

2025-12-24

python全球日历节假日查看器

核心功能 全球支持:支持查询全球主要国家的节假日(基于 ISO 国家代码,如 CN, US, GB 等)。 可视化日历: 节假日高亮:红色背景 + 节日名称显示。 周末标记:灰色背景,一目了然。 今日提醒:蓝色高亮显示当前日期。 灵活导出: 支持导出 CSV 格式数据。 自定义范围:可自由勾选需要导出的月份,或一键全选导出全年数据。 详细字段:包含日期、星期、类型(工作日/节假日/周末)、节日名称。 现代化界面:采用大尺寸控件、清晰的图例和舒适的配色方案。

2025-12-19

python-打造高效Excel数据合并工具(自定义为一项合并单元格未勾选不合并)

## 1. 项目背景与需求 **痛点:** - 原始数据通常是“一维”的清单,重复信息(如订单号、日期)在每一行都显示。 - 财务或业务部门需要查看“合并版”报表,即相同的订单信息合并单元格,右侧展示明细。 - 需要同时生成 JSON 数据供其他系统使用。 **解决方案:** 开发一个桌面小工具,用户只需选择 Excel 文件,勾选作为“合并依据”的列(Key),程序自动完成分组、合并和导出。 ## 2. 核心功能 1. **图形化界面 (GUI)**:基于 PyQt5,操作简单直观。 2. **灵活的列选择**:自动读取 Excel 表头,用户可勾选哪些列作为 Key(合并依据),未勾选的列作为 Detail(明细)。 3. **智能日期处理**:自动识别包含“日期”、“时间”、“Date”、“Time”的列,并统一格式化为 `YYYY-MM-DD`,解决 Excel 数字序列号(如 45932)的问题。 4. **数据清洗**:自动处理科学计数法(如 `1.23E+11`),去除无效的空行。 5. **双重输出**: - **Excel**:生成的表格中,Key 列自动合并单元格,且居中显示。 - **JSON**:生成结构化的 JSON 数据,方便后续 API 调用或存档。 ## 3. 技术栈 - **Python 3.x** - **Pandas**: 强大的数据处理库,用于读取和分组数据。 - **Openpyxl**: 用于操作 Excel 文件,核心的 `merge_cells` 功能依赖它。 - **PyQt5**: 构建桌面应用程序界面。 - **Calamine**: (可选) 配合 Pandas 使用的高性能 Excel 读取引擎。

2025-12-19

Python办公自动化-Excel多层json制作

源码:https://ikunkun.blog.csdn.net/article/details/156015300?spm=1011.2415.3001.5331 在数据处理的日常工作中,我们经常需要将 Excel 表格中的扁平化数据转换为层级分明的 JSON 格式,以便于后续的系统对接或数据分析。本文将详细介绍一款基于 Python PyQt5 开发的“通用多层 JSON 制作工具”,它不仅支持灵活的列映射,还引入了强大的正则表达式匹配功能,让数据转换变得前所未有的简单和高效。

2025-12-17

TXT以及Word文档批量转换PDF

这是一个使用 Python 和 PyQt5 构建的桌面应用程序,允许用户将文本文件 (.txt) 和 Word 文档 (.doc, .docx) 转换为 PDF 格式,同时保持原始排版。 功能特点 拖拽支持:轻松将文件或文件夹直接拖入应用程序。 批量处理:一次转换多个文件。 目录支持:自动扫描并添加选定文件夹中的支持文件。 排版保持:使用 Microsoft Word 引擎(通过 COM 自动化)确保 PDF 输出与源文档完全一致。 现代化 UI:简洁且响应迅速的界面。 前置要求 Windows 操作系统(需要 MS Word 的 COM 自动化支持) 已安装 Microsoft Word Python 3.x 安装 克隆仓库或下载源代码。 安装所需的依赖项:

2025-12-16

Python批量提取Excel某列的运单号

在日常电商运营或物流处理工作中,我们经常会遇到这样的痛点:客服聊天记录、备注信息里混杂着大量的文本,需要从中提取出顺丰运单号。如果手动一个个复制粘贴,不仅效率低下,还容易出错。 之前我们开发了一个单文件版本,但如果面对几十个 Excel 文件怎么办?一个个点开太慢了! 今天,我就带大家把工具升级为批量高性能版!支持拖拽文件夹、多文件批量处理、自动合并结果,并且引入 Rust 加速引擎,让提取速度飞起来!

2025-12-15

(2025年)全国行政区划代码.json

文章链接:https://ikunkun.blog.csdn.net/article/details/155931370?spm=1011.2415.3001.5331 本文详细介绍如何使用 Python 编写一个健壮的爬虫,从目标网站抓取中国最新的省、市、县三级行政区划代码。我们将重点攻克 SSL 验证错误、动态 JS 链接解析以及服务器反爬限制等技术难点,最终输出结构化的 CSV 和 JSON 数据。

2025-12-15

Python-Excel按列拆分-可选择保存方式

工具简介 这是一个基于 Python Tkinter 开发的 Excel 拆分工具,旨在帮助用户快速将一个 Excel 表格按照某一列的值拆分成多个部分。无论是需要将数据分发给不同的人,还是进行分类存档,这个工具都能大大提高效率。 核心功能 文件/文件夹选择:支持选择单个 Excel 文件或包含多个 Excel 文件的文件夹进行批量处理。 灵活配置: 支持多Sheet选择:现在可以按住 Ctrl 或 Shift 键同时选择多个 Sheet 进行批量处理。 自定义表头所在行数。 可视化选择用于拆分的列(如:按“部门”、“日期”等拆分)。

2025-12-11

Python办公-Excel多sheet转换csv(极速版)

* **双模式支持**:支持“文件夹批量转换”和“单个文件转换”两种模式。 * **多Sheet处理**:对于Excel文件,自动读取所有Sheet,并允许用户选择需要转换的Sheet。每个Sheet将保存为独立的CSV文件。 * **智能编码识别**:在处理CSV文件时,利用 `chardet` 库自动检测源文件编码,并统一转换为 UTF-8,彻底解决乱码问题。 * **高性能读取**:使用 `python_calamine` 库读取Excel文件,速度快且内存占用低。 * **多线程处理**:转换任务在后台线程运行,保证界面流畅,带有实时进度条和状态反馈。 * **拖拽支持**:支持直接将文件或文件夹拖入窗口进行快速加载。

2025-12-10

Excel某列按照条件组拆分

在日常的数据处理工作中,我们经常遇到这样的需求:拿到一张包含几千条数据的Excel总表,需要根据某一列(比如“班级”、“部门”或“分数段”)将数据拆分成不同的小表。 如果手动筛选、复制、粘贴,不仅效率低下,还容易出错。今天为大家介绍一个我用Python开发的**《Excel条件拆分器》**,它拥有现代化的图形界面,支持多种拆分条件,甚至支持正则表达式,让拆分工作变成一种享受!

2025-12-08

Python-Excel&PDF添加文字、图片水印

本文详细介绍一个基于 PyQt5、Pillow、ReportLab、PyPDF 与 OpenPyXL 的桌面水印工具的实现细节,从界面交互到预览算法、从 PDF/Excel 处理到打包分发的全流程。项目现已将所有核心逻辑合并到单文件 main.py,便于按需打包成单个可执行文件。

2025-12-08

python-批量图片添加文字水印

在日常工作和自媒体运营中,我们经常需要给大量的图片添加水印以保护版权。市面上的工具要么收费,要么功能单一。今天,我们将使用 Python 强大的 GUI 库 PyQt5 和图像处理库 Pillow (PIL),亲手打造一个免费、开源且功能强大的批量水印工具。

2025-12-08

Python-实现批量提取PDF中的图片与表格

在日常办公中,我们经常遇到需要从 PDF 文件中提取数据的场景。手动复制粘贴不仅效率低下,还容易出错。虽然市面上有很多 PDF 工具,但要么收费,要么功能单一。今天,我们将使用 Python 和 PyQt5,亲手打造一款支持批量处理、拖拽添加、自动导出 Excel 的 PDF 提取工具。 功能亮点 这款工具专为解决办公痛点设计,主要包含以下核心功能: 图形化界面 (GUI):基于 PyQt5 开发,界面简洁友好。 拖拽支持:直接将 PDF 文件拖入窗口即可添加到处理列表。 批量处理:支持一次性处理多个文件,解放双手。 表格提取:智能识别 PDF 中的表格,并自动导出为 Excel (.xlsx) 文件。 图片提取:无损提取 PDF 中的所有图片资源。 实时反馈:内置进度条和日志窗口,随时掌握处理状态。 技术栈 为了实现这些功能,我们需要用到以下强大的 Python 库: PyQt5: 用于构建图形用户界面。 pdfplumber: 目前 Python 生态中处理 PDF 表格最优秀的库之一。 PyMuPDF (fitz): 速度极快的 PDF 处理库,用于高效提取图片。 pandas & openpyxl: 用于将提取的数据保存为 Excel 格式。

2025-12-03

Python-双表Excel匹配神器

在实际数据处理场景中,我们常遇到:两张表需要按某个(或多个)键进行匹配联动,快速核对字段是否一致、是否覆盖、并预览最终的合并结果。为了解决这个高频痛点,我实现了一个轻量的 PyQt5 桌面工具——「双表匹配神器」。 财务核对:订单表(A)与支付流水(B)按 id + order_no 对齐,查看支付状态与金额是否一致 运营报表:用户活动表(A)对齐日志明细(B),快速筛出命中与未命中记录 数据清洗:识别键列缺失或命名不统一问题,及时修正字段映射

2025-12-02

Python-GIF动态图转MP4

拖拽/多选 .gif 到列表,支持拖拽文件夹递归识别 输入或浏览选择 ffmpeg.exe 路径(留空使用系统 PATH) 一键批量转换为同名 .mp4,输出与源文件同目录 后台线程转换,界面不中断,实时状态提示 自动过滤重复与非 GIF 文件

2025-11-25

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除