hdu 4123 树形dp (最小途径+次小途径+最小逆向途径)+RMQ

树型dp那里本来我是想保存每个节点向下不通过任意一个子节点的最大路径,但是这样时间复杂度最坏的情况下能达到O(n2),马上想到了可以记录每一个点到下一个点的次小路径,这样的话可以把时间复杂度严格的控制在O(n)。不过最后查询的时候只能那样搞了,区域赛的题搞个那种蛋疼的查询卡人真心没意思啊。。。

树形dp还是很有爱的,一次DFS()加一次BFS(),搜出 最小途径+次小途径+最小逆向途径~~再加上RMQ的O(1)最大最小查询~~就AC鸟~~~

时间还不错~~656ms能排第六~~

#include<algorithm>
#include<iostream>
#include<iomanip>
#include<cstring>
#include<utility> 
#include<complex>
#include<cstdlib>
#include<bitset>
#include<string>
#include<vector>
#include<cstdio> 
#include<cctype>
#include<limits>  
#include<cmath>    
#include<queue>    
#include<stack>
#include<deque>
#include<cmath>
#include<ctime>
#include<list> 
#include<map>
#include<set> 
using namespace std;
const int inf=0x7fffffff;
const int maxn=51111;
const int maxc=17;
struct zz
{
    int way;
    int id; 
}tz;
int n,m;
int x,y,l,w,ans,lx,rx,tx;
vector<zz>g[maxn];
queue<int>q;
bool vis[maxn];
int fa[maxn];
int len[maxn];
int down[maxn][3];     //最小途径+次小途径+最小逆向途径 
int dp[maxn];           
int lg2[maxn];
int xx2[maxc];
int a[maxn][maxc];     //最大查询
int b[maxn][maxc];     //最小查询
void dfs(int v=1)
{
    for(int i=0;i<g[v].size();i++)
    {
        if(vis[g[v][i].id])
        {
            continue;
        }            
        fa[g[v][i].id]=v;
        len[g[v][i].id]=g[v][i].way;
        vis[g[v][i].id]=true;
        dfs(g[v][i].id);
        if(down[g[v][i].id][0] + g[v][i].way > down[v][0] )
        {
            down[v][1] = down[v][0];
            down[v][0] = down[g[v][i].id][0] + g[v][i].way;
        }
        else if(down[g[v][i].id][0] + g[v][i].way > down[v][1])
        {
            down[v][1] = down[g[v][i].id][0] + g[v][i].way;
        }
    }       
    return ;
} 
void bfs(int now=1,int temp=0)
{
    memset(vis,0,sizeof(vis));
    while(!q.empty())
    {
        q.pop();
    }    
    vis[now]=true;
    down[now][2]=0;
    for(int i=0;i<g[now].size();i++)
    {
        if(vis[g[now][i].id])
        {
            continue;
        }
        vis[g[now][i].id]=true;
        q.push(g[now][i].id);
    }
    while(!q.empty())
    {
        now=q.front();
        q.pop();
        for(int i=0;i<g[now].size();i++)
        {
            if(vis[g[now][i].id])
            {
                continue;
            }
            vis[g[now][i].id]=true;
            q.push(g[now][i].id);
        }
        temp=down[fa[now]][0];
        if( temp == down[now][0] + len[now] )
        {
            temp = down[fa[now]][1];
        }
        down[now][2]=max(down[fa[now]][2],temp)+len[now];       
    }
    return ;
}
void dpstart()
{
    memset(vis,0,sizeof(vis));
    memset(down,0,sizeof(down));
    memset(dp,0,sizeof(dp));
    fa[1]=0;
    len[1]=0;
    vis[1]=true;
    dfs();
    bfs();
    for(int i=1;i<=n;i++)       
    {
        dp[i]=max(down[i][0],down[i][2]);
    }
    return ;    
}
void init()
{
    int l=1,r=1;
    lg2[1]=0;  
    for(int i=0;i<maxc;i++)
    {
        xx2[i]=1<<i;    
    }
    for(int i=1;i<=maxc;i++)
    {
        l=xx2[i];
        r=xx2[i+1];
        for(int j=l; j<r && j<maxn ; j++ )
        {
            lg2[j]=i;        
        }            
    }                          
    return ;
}
void rmq()
{
    for( int i=1; i<=n; i++)
    {
        a[i][0] = dp[i];
        b[i][0] = dp[i];   
    }
    for ( int j=1; xx2[j] <= n; j++ )
    {
        for ( int i=1; i + xx2[j] -1 <=n; i++ )
        {
            a[i][j]=max(a[i][j-1],a[i+xx2[j-1]][j-1]);
            b[i][j]=min(b[i][j-1],b[i+xx2[j-1]][j-1]);       
        }
    }
    return ;
}
inline int qa()
{
    return max(a[lx][tx],a[rx-xx2[tx]+1][tx])-min(b[lx][tx],b[rx-xx2[tx]+1][tx]);    
}
inline void query()
{
    ans=1;  
    for(lx=1;lx<=n-ans;++lx)
    {
        for(rx=lx+ans;rx<=n;++rx)
        {
            tx=lg2[rx-lx+1];
            if(qa() <= w)
            {         
                ans++;            
            }  
            else
            {
                break;
            }     
        }
    }
    return ;
}
int main()
{
    init();
    while(scanf("%d%d",&n,&m))
    {
        if(n==0 &&m==0)
        {
            break;
        }   
        for(int i=1;i<=n;i++)
        {
            g[i].clear();
        }
        for(int i=1;i<=n-1;i++)
        {
            scanf("%d%d%d",&x,&y,&l);
            tz.id=y;
            tz.way=l; 
            g[x].push_back(tz);
            tz.id=x;
            g[y].push_back(tz);                    
        }   
        dpstart();
        rmq();
        for(int i=1;i<=m;i++)
        {
            scanf("%d",&w);
            query();
            printf("%d\n",ans);
        }
    }                         
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值