Serialize and Deserialize Binary Tree

本文介绍了一种二叉树的序列化与反序列化算法,该算法能够将二叉树转化为字符串形式,并能从字符串中重构出原来的二叉树结构。文章详细解释了序列化过程中如何通过递归遍历节点来构建字符串,以及反序列化过程中如何通过解析字符串并重建二叉树。

Serialization is the process of converting a data structure or object into a sequence of bits so that it can be stored in a file or memory buffer, or transmitted across a network connection link to be reconstructed later in the same or another computer environment.

Design an algorithm to serialize and deserialize a binary tree. There is no restriction on how your serialization/deserialization algorithm should work. You just need to ensure that a binary tree can be serialized to a string and this string can be deserialized to the original tree structure.

For example, you may serialize the following tree

    1
   / \
  2   3
     / \
    4   5

as "[1,2,3,null,null,4,5]", just the same as how LeetCode OJ serializes a binary tree. You do not necessarily need to follow this format, so please be creative and come up with different approaches yourself.

 

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Codec {

    // Encodes a tree to a single string.
    public String serialize(TreeNode root) {
        if (root == null) {
        	return "#!";
        }
        String res = root.val + "!";
        res += serialize(root.left);
        res += serialize(root.right);
        return res;
    }

    // Decodes your encoded data to tree.
    public TreeNode deserialize(String data) {
    	String[] split = data.split("!");
    	LinkedList<String> queue = new LinkedList<>();
    	for (int i = 0; i < split.length; i++) {
    		queue.offer(split[i]);
		}
    	return reconPreOrder(queue);
    }

	private TreeNode reconPreOrder(LinkedList<String> queue) {
		// TODO Auto-generated method stub
		String poll = queue.poll();
		if (poll.equals("#")) {
			return null;
		}
		TreeNode head = new TreeNode(Integer.valueOf(poll));
		head.left = reconPreOrder(queue);
		head.right = reconPreOrder(queue);
		return head;
	}
}

// Your Codec object will be instantiated and called as such:
// Codec codec = new Codec();
// codec.deserialize(codec.serialize(root));

 

内容概要:本文围绕无人机集群路径规划问题展开研究,采用五种优化算法(SFOA、APO、GOOSE、CO、PIO)【无人机集群路径规划】基于5种优化算法(SFOA、APO、GOOSE、CO、PIO)求解无人机集群路径规划研究(Matlab代码实现)进行求解,并提供了基于Matlab的代码实现。文章重点探讨了这些智能优化算法在复杂环境下的路径搜索能力、收敛性能及避障策略,通过仿真实验对比分析各算法在无人机集群协同路径规划中的有效性与优劣,旨在提升多无人机系统的任务执行效率与路径最优性。研究内容涵盖了路径规划的数学建模、适应度函数设计、约束条件处理以及多机协同机制,展示了优化算法在实际工程问题中的应用价值。; 适合人群:具备一定Matlab编程基础和优化算法知识的科研人员、自动化或计算机相关专业的研究生及高年级本科生,以及从事无人机系统开发与智能控制领域的技术人员。; 使用场景及目标:①用于解决多无人机协同执行侦察、监测、救援等任务时的路径规划问题;②为智能优化算法在复杂空间搜索问题中的性能对比提供实验平台;③辅助科研人员复现算法结果、开展进一步改进与创新研究; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注目标函数构建与参数设置对优化结果的影响,建议通过调整环境障碍物布局和无人机数量进行扩展实验,以增强对算法鲁棒性和可扩展性的认识。
### 力扣热门100题列表 力扣(LeetCode)上的热门题目通常是指那些被广泛讨论、高频面试或者具有较高难度的题目。这些题目涵盖了数据结构和算法的核心知识点,适合用来提升编程能力和解决实际问题的能力。 以下是基于社区反馈整理的部分 **LeetCode Hot 100 Problems List**: #### 数组与字符串 1. Two Sum (两数之和)[^1] 2. Longest Substring Without Repeating Characters (无重复字符的最长子串)[^2] 3. Median of Two Sorted Arrays (两个有序数组的中位数)[^1] 4. Container With Most Water (盛最多水的容器)[^2] #### 链表 5. Reverse Linked List (反转链表) 6. Merge Two Sorted Lists (合并两个有序链表) 7. Remove Nth Node From End of List (删除倒数第N个节点) 8. Linked List Cycle II (环形链表II) #### 堆栈与队列 9. Valid Parentheses (有效的括号) 10. Min Stack (最小栈) 11. Sliding Window Maximum (滑动窗口最大值)[^2] #### 树与二叉树 12. Binary Tree Inorder Traversal (二叉树的中序遍历) 13. Validate Binary Search Tree (验证二叉搜索树) 14. Same Tree (相同的树) 15. Serialize and Deserialize Binary Tree (序列化与反序列化二叉树) #### 图论 16. Number of Islands (岛屿数量) 17. Course Schedule (课程表) 18. Clone Graph (克隆图) #### 排序与搜索 19. Find First and Last Position of Element in Sorted Array (在排序数组中查找元素的第一个和最后一个位置) 20. Search a 2D Matrix (二维矩阵搜索) 21. K Closest Points to Origin (最接近原点的K个点) #### 动态规划 22. Climbing Stairs (爬楼梯) 23. House Robber (打家劫舍)[^1] 24. Coin Change (零钱兑换) 25. Unique Paths (不同路径) #### 贪心算法 26. Jump Game (跳跃游戏)[^1] 27. Non-overlapping Intervals (无重叠区间) 28. Best Time to Buy and Sell Stock (买卖股票的最佳时机)[^1] #### 字符串匹配与处理 29. Implement strStr() (实现strStr()) 30. Longest Consecutive Sequence (最长连续序列) 31. Group Anagrams (分组异位词) --- ### 示例代码片段 以下是一个关于动态规划的经典例子——`Climbing Stairs` 的 Python 实现: ```python class Solution: def climbStairs(self, n: int) -> int: if n == 1 or n == 2: return n dp = [0] * (n + 1) dp[1], dp[2] = 1, 2 for i in range(3, n + 1): dp[i] = dp[i - 1] + dp[i - 2] return dp[n] ``` 上述代码通过动态规划的方式解决了 `Climbing Stairs` 问题,时间复杂度为 \(O(n)\),空间复杂度同样为 \(O(n)\)[^1]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值