光棍节两光棍的对话

今天是11月11日,也就是传说中的“光棍节”。有一男一女两个光棍通过QQ在聊天,男的网名叫“砖石王老五”,女的网名叫“单身女强人”,下面是他们两人的对话实录:

砖石王老五:ni hao r

单身女强人:hi wink_smile.gif

砖石王老五:看你的网名,知道你是一个GG!

单身女强人:你也是吧!

砖石王老五:YEAH!知道今天是什么日子吗?

单身女强人:Of course.“光棍节”啊,谁不知道!

砖石王老五:这可是我们的节日啊!一年就这一次啊!

单身女强人:不是还有11月1日吗?

砖石王老五:那充其量只算个“小光棍节”,不是法定的!按你这么说,1月1日,1月11日,11月1日,11月11日都是“光棍节”了?我觉得只有11月11日才算是名副其实的“光棍节”,因为它的1最多嘛!

单身女强人:呵呵,有道理!不过1月1日是元旦哦,不能把它算为“小光棍节”,不怎么吉利哦!

砖石王老五:这倒是!现在好象只是在民间私下流行,还没得到官方的认可。我建议积极申报,争取成为法定的节日。

单身女强人:这能行吗?

砖石王老五:怎么不行?现在中国的GG这么多,人多力量大嘛,不久的将来就会成为强势群体的,到时候说话分量足,一定会成功的!

单身女强人:我希望那一天快点到来!!! regular_smile.gif

砖石王老五:我都想好了节歌,就取名为“光棍歌”,想听听吗?

单身女强人:想啊!!! teeth_smile.gif

砖石王老五:光棍儿好,光棍儿好,一觉睡到大清早。一人赚钱一人花,想花多少就多少。没有老伴和孩子,一人可以到处跑。
光棍儿苦,光棍儿苦,一晃到了二十五。晚上没人暖被窝,衣服破了没人补。遇到什么伤心事,不知向谁去
倾诉。看到别人成双对,直把眼泪吞下肚。

单身女强人:写得太好了,好感动哦! cry_smile.gif

砖石王老五:有感而发,肺腑之言!我准备将阿丙的二胡演奏作为配乐,烘托一下气氛!

单身女强人:看了你这歌词,我感觉当光棍好好可怜哦!我现在好想嫁人哦!

砖石王老五:我也是!不如我们两个...... wink_smile.gif

单身女强人:你是说那个 red_smile.gif!其实我对你蛮有好感的,看得出来,你很有才华!

砖石王老五:你同意了吗?

单身女强人:你好讨厌哦!人家已经说了嘛!真笨!

砖石王老五:哦,I see,I see!!! teeth_smile.gif我们明天就去领结婚证,怎么样?

突然“喀”的一声,四周一片漆黑。。。。。。




深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值