光棍节的快乐
时间限制:
1000 ms | 内存限制:
65535 KB
难度:2
-
描述
-
光棍们,今天是光棍节。聪明的NS想到了一个活动来丰富这个光棍节。
规则如下:
每个光棍在一个纸条上写一个自己心仪女生的名字,然后把这些纸条装进一个盒子里,这些光 棍依次抽取一张纸条,如果上面的名字就是自己心仪的女生,那么主持人就在现场给该女生打电话,告诉这个光棍对她的爱慕之情,并让光棍当场表白,并得到现场所有人的祝福,没抽到的,嘿嘿就可以幸免了。
假设一共有N个光棍,其中有M个没有抽到自己的纸条,求发生这种情况一共有多少种可能.。
-
输入
- 每行包含两个整数N和M(1<M<=N<=20),以EOF结尾。 输出
-
对于每个测试实例,请输出一共有多少种发生这种情况的可能,每个实例的输出占一行。
样例输入
-
2 2
-
3 2
样例输出
-
1
-
3
-
全错排公式为 f[n]=(n-1)*(f[n-1]+f[n-2])
这个叫全错排列问题,最早是由 欧拉给出的答案.我们不妨设N个人的拿法为f(N),则f(N)=(N-1)[f(N-1)+f(N-2)].f(0)=0,f(1)=1.这个 递推公式是很容易证明的. 证明如下: 设N个人为a,b,c,d...,N张卡为A,B,C,D... 若a拿b的卡B,b也拿a的卡A,则显然只剩下N-2个人拿卡,自然是f(N-2)种了. 若a拿b的卡B,b没拿a的卡A(与"b没拿b的卡B"相同),则显然与N-1个人拿卡一样,自然是f(N-1)种了. 而a不一定拿B,只要是B,C,D...(N-1个)中的一个就可以了,所以在f(N-1)+f(N-2)再乘上N-1就行了. 如果你学过解抽象函数方程的话,f(N)=(N-1)[f(N-1)+f(N-2)]在自然数内的解是f(N)=N![1/2!-1/3!+...+(-1)^N/N!](N=1时f(N)=1).-
#include<stdio.h> long long int a[1000]; int main() { int n,m; while(scanf("%d%d",&n,&m)!=-1) { a[1]=0; a[2]=1; a[3]=2; for(int i=4;i<=20;i++) { a[i]=(i-1)*(a[i-1]+a[i-2]); } long long int sum=1,ni=1; for(int i=n;i>n-m;i--) { sum=sum*i; } for(int i=m;i>1;i--) { ni=ni*i; } long long int p; p=sum/ni; printf("%lld\n",p*a[m]);//c(n,m)*a[m] } }
-