光棍节的快乐

光棍节的快乐

时间限制: 1000 ms  |  内存限制: 65535 KB
难度:2
描述

光棍们,今天是光棍节。聪明的NS想到了一个活动来丰富这个光棍节。

规则如下:

每个光棍在一个纸条上写一个自己心仪女生的名字,然后把这些纸条装进一个盒子里,这些光 棍依次抽取一张纸条,如果上面的名字就是自己心仪的女生,那么主持人就在现场给该女生打电话,告诉这个光棍对她的爱慕之情,并让光棍当场表白,并得到现场所有人的祝福,没抽到的,嘿嘿就可以幸免了。

假设一共有N个光棍,其中有M个没有抽到自己的纸条,求发生这种情况一共有多少种可能.。

输入
每行包含两个整数N和M(1<M<=N<=20),以EOF结尾。
输出
对于每个测试实例,请输出一共有多少种发生这种情况的可能,每个实例的输出占一行。
样例输入
2 2
3 2
样例输出
1
3

全错排公式为  f[n]=(n-1)*(f[n-1]+f[n-2])

这个叫全错排列问题,最早是由 欧拉给出的答案.我们不妨设N个人的拿法为f(N),则f(N)=(N-1)[f(N-1)+f(N-2)].f(0)=0,f(1)=1.这个 递推公式是很容易证明的. 证明如下: 设N个人为a,b,c,d...,N张卡为A,B,C,D... 若a拿b的卡B,b也拿a的卡A,则显然只剩下N-2个人拿卡,自然是f(N-2)种了. 若a拿b的卡B,b没拿a的卡A(与"b没拿b的卡B"相同),则显然与N-1个人拿卡一样,自然是f(N-1)种了. 而a不一定拿B,只要是B,C,D...(N-1个)中的一个就可以了,所以在f(N-1)+f(N-2)再乘上N-1就行了. 如果你学过解抽象函数方程的话,f(N)=(N-1)[f(N-1)+f(N-2)]在自然数内的解是f(N)=N![1/2!-1/3!+...+(-1)^N/N!](N=1时f(N)=1).
#include<stdio.h>
long long int a[1000];
int main()
{
    int n,m;
    while(scanf("%d%d",&n,&m)!=-1)
    {
        a[1]=0;
        a[2]=1;
        a[3]=2;
        for(int i=4;i<=20;i++)
        {
            a[i]=(i-1)*(a[i-1]+a[i-2]);
        }
        long long int sum=1,ni=1;
        for(int i=n;i>n-m;i--)
        {
            sum=sum*i;
        }
        for(int i=m;i>1;i--)
        {
            ni=ni*i;
        }
        long long int p;
        p=sum/ni;
        printf("%lld\n",p*a[m]);//c(n,m)*a[m]
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值