程序员应知: 海量数据如何分析

程序员应知: 海量数据如何分析
2010年12月30日
  【IT168 评论】这个云计算热炒的时代,如果你没有处理过海量数据的话,你将不再是个合格的Coder。现在赶紧补补吧~
  前一阵子分析了一个将近1TB的数据群(gz文件,压缩10%)。因为第一次分析如此巨大的数据,没有经验,所以浪费了许多时间。下面是我整理的一些经验,方便后者。
  下载数据
  Q:怎么自动下载多个文件?
  这是我遇到的第一个问题。当数据量很大时,一般都会分成很多个文件存放。这时下载文件比较麻烦。
  A:用Wget命令。Windows下花费一点时间去下载安装。但之于手动下载,能省不少时间。
  我提供两种方式方式下载文件,
  a)用Wget的递归下载选项 "-r"。一般命令如下
  wget r http:/// -o -np
  因为递归下载没法控制进度,所以建议不一要次递归下载太多的文件
  b)用Bat+Wget,多次执行Wget。一般命令如下
  wget r http:/// -o -np
  wget r http:/// -o -np
  wget r http:/// -o -np
  …… ……
  wget r http:/// -o -np
  用Bat可以降低出错带来的影响。
  另外,Wget可以通过 A 选项来指定希望下载的文件的后辍,通过 P 选项来指定下载文件存放路径。更多命令,参见wget -h
  Q:这速度。。。什么时候才能下完?
  网速永远是个瓶颈
  A:如果下载服务很远的话,你应该考虑代理。wget设置代理的方式如下
  set http_proxy=http://
  不要忘了多开几个进程,20个试试?
  打开文件
  Q:怎么打开文本文件
  这不是弱智问题。你用记事本打开一个100MB的文件试试
  A:LTF viewer
  Large Text File viewer, 打开速度会让你惊奇
  Q:怎么打开二进制文件
  A:Hex Editor Neo
  你可以通过下面方式来选择进制:
  右击数据区 => Display As => Hex|Decimal|Octal|Binary|Float|Double
  你可以通过下面方式来选择按多少字节显示:
  右击数据区 => Group By => Bytes|Words|Double|Quad
  编程语言
  当数据量很大时,选择语言要慎重了。因为不同语言有不同的特点,你要在编程时间和运行时间之间权衡。
  模型测试
  开始时,一般挑几个小的数据进行测试,获取第一份分析结果。这时当然希望能快速编程实现。脚本语言是一个很好的选择,比如Python。
  大量处理
  开始遍历处理所有数据时,用脚本语言来处理就不太合适了。因为脚本语言的运行时间不能让人接受。另外,还有内存使用,文件读写这些你都没法控制。不幸的是,很少语言会为你处理海量文件做优化。
  这时,C/C++是最好的选择。
  结果展示
  漫长的等待终于过去了,眼看就要出结果了。如果你还执着于陪伴你度过漫长等待的C/C++的话,你迟早会沮丧的。
  我尝试了很多方式之后,得出的结论是,让Matlab来接手C/C++。Matlab能轻而易举地展示大量数据。更重要的是Matlab支持读取二进制文件。
  filename = 'out.bin'; % binary file
  fid = fopen( filename );
  data = fread( fid, itemsNumber, '*uint32');
  fclose(fid);
  算法
  一次性读文件
  我已经测试过好几次了,一次性读取文件比一行一行读文件至少快五倍
  记住O(N)
  这时你要好好考虑算法的复杂度了。任何O(N2)的算法都不可取。
  必要的时候可以通过空间来换时间。通常哈希表能节省不少时间。
  并行处理
  温习一下并行算法。这比等待单线程程序好很多。
  可以考虑在GPU上跑程序。当然,内存和文件读取时间更可能是瓶颈。
  内存、CPU、磁盘读取速度,谁是瓶颈,任务管理器知道。
  优化核心代码
  通常80%的时间在运行20%的代码。所以有空的话优化下经常经常执行的代码。 分布式保存
  把分析结果存在一个文件中是一个很糟糕的决定。这会为后面处理带来很多麻烦。比如并行处理,文件过大等。
  二进制方式保存中间数据
  二进制方式存放通常能省一半的磁盘空间。这同时意味着减少一半的写硬盘时间和读硬盘时间。当然,还有文本转换时间。
  还有个重要细节要注意:在Windows中,读写文件的方式要改成"rb"和"wb"。要不然莫名的Bug迟早要发生,但不一定能找到。
  运行
  Debug Vs Release
  别忘了,最终运行时把编译方式换成Release。但是刚改完程序的话,建议先用Debug模式试跑一下。这样能定位运行时异常。
  批处理
  批处理是降低运行出错风险的很好的方式。因为你不确定程序能正常结束。所以一段一段执行程序是一个很好的选择。如果某个地主出问题的话就不用重新运行前面的程序了。
  断言
  当数据量很大时,很难保证输入是合法的。另一种情况是,数据是合法的,但我们欠考虑了。这时断言就显得很重要了。断言回增加运行时间,但总比花大量时间得到一个错误结果好。
  记录运行结果到文件
  前面提到,数据量很大时,很难保证程序正常结束。一般,很少人会坐在显示器旁监视输出结果。把运行情况定时记录到文件是非常必要的。
  另外,不要忘了fclose();
  附:64位编程问题
  数据量很大时,内存通常是不够用的。有一个常识必须知道:32位程序的最大寻址空间是2GB。如果你要分配接近或者超过2G内存的话,试试64位程序吧。当然有两条件:64位的CPU,64位的操作系统。
  下面是编写64位程序的一些经验
  编译环境
  如果是解释型语言,比如Python,则需要下载一个64位的Python解释器
  如果是编译型语言,比如C/C++,则需要选择恰当的编译平台。
  比如VS2010中,项目属性 => Configuration Manager => Platform => New => X64
  
  内存
  分配大数组,应该用malloc,而不是直接定义数组。
  sizeof( int ) != sizeof( size_t )
  64位程序中,数组下标应该换成size_t,常数也需要强制转换,比如 4GB = 4*(size_t)1000000000000
  文件
  fwrite一次性写入一个大于4GB的数组似乎有些问题。
  分多次写入文件试试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值