背景
最近一个月都在做项目,我主要负责分布式任务的调度的功能,需要实现一个分布式的授权控制。
具体的需求:
1. 首先管理员启动整个任务,并设置执行权限
2. 工作节点收到消息后就会创建对应的线程,并开始执行任务(任务都是由一个管理员进行分配)
3. 运行过程中管理员需要临时中断某个任务,需要设置一个互斥信号,此时对应的工作节点都需要被阻塞,注意不是完全销毁
分析
先抛开分布式通讯这一块,首先从单个jvm如何实现进行分析, 简单点来说:
在单jvm中就是两种线程,一个为manager,另一种为worker。1:n的对应关系,manager可以随时挂起worker的所有线程,而worker线程互不干扰。
咋一看,会觉得是一个比较典型的读写锁的应用场景,读写锁特性:
- 当读写锁是写加锁状态时, 在这个锁被解锁之前, 所有试图对这个锁加锁的线程都会被阻塞.
- 当读写锁在读加锁状态时, 所有试图以读模式对它进行加锁的线程都可以得到访问权, 但是如果线程希望以写模式对此锁进行加锁, 它必须直到知道所有的线程释放锁.
使用读写锁实现这样的功能会存在一个问题,就是对应的写锁是没有抢占权,比如当前有读锁未释放时,写锁一直会被阻塞。而项目的需求是,manager是个领导,它可以不用排队,随时打断你。
除此之外,整个worker线程操作会是一个跨方法,跨类的复杂实现。通过lock方式实现,异常稍微处理不好,很容易造成锁未释放,导致manager一直拿不到对应的锁操作。而且worker中本省会使用一些lock操作,容易造成死锁
总结一下:
- 需要的是一个类似于信号量的PV控制
- 具有的读写锁的,读线程可以不互相影响,写线程拥有最高的抢占权,可以不理会读线程是否在操作
- 支持线程中断 (worker线程需要允许cancel)
实现
基于jdk 1.5之后的concurrent的AQS,实现了一个自己的互斥信号控制。 A.Q.S的可以看我的另一篇文章:jdk中cocurrent下的AbstractQueuedSynchronizer理解记录
代码:
public class BooleanMutex {
private Sync sync;
public BooleanMutex() {
sync = new Sync();
set(false);
}
public BooleanMutex(Boolean mutex) {
sync = new Sync();
set(mutex);
}
/**
* 阻塞等待Boolean为true
*
* @throws InterruptedException
*/
public void get() throws InterruptedException {
sync.innerGet();
}
/**
* 阻塞等待Boolean为true,允许设置超时时间
*
* @param timeout
* @param unit
* @throws InterruptedException
* @throws TimeoutException
*/
public void get(long timeout, TimeUnit unit) throws InterruptedException, TimeoutException {
sync.innerGet(unit.toNanos(timeout));
}
/**
* 重新设置对应的Boolean mutex
*
* @param mutex
*/
public void set(Boolean mutex) {
if (mutex) {
sync.innerSetTrue();
} else {
sync.innerSetFalse();
}
}
public boolean state() {
return sync.innerState();
}
/**
* Synchronization control for BooleanMutex. Uses AQS sync state to
* represent run status
*/
private final class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = -7828117401763700385L;
/** State value representing that TRUE */
private static final int TRUE = 1;
/** State value representing that FALSE */
private static final int FALSE = 2;
private boolean isTrue(int state) {
return (state & TRUE) != 0;
}
/**
* 实现AQS的接口,获取共享锁的判断
*/
protected int tryAcquireShared(int state) {
// 如果为true,直接允许获取锁对象
// 如果为false,进入阻塞队列,等待被唤醒
return isTrue(getState()) ? 1 : -1;
}
/**
* 实现AQS的接口,释放共享锁的判断
*/
protected boolean tryReleaseShared(int ignore) {
//始终返回true,代表可以release
return true;
}
boolean innerState() {
return isTrue(getState());
}
void innerGet() throws InterruptedException {
acquireSharedInterruptibly(0);
}
void innerGet(long nanosTimeout) throws InterruptedException, TimeoutException {
if (!tryAcquireSharedNanos(0, nanosTimeout))
throw new TimeoutException();
}
void innerSetTrue() {
for (;;) {
int s = getState();
if (s == TRUE) {
return; //直接退出
}
if (compareAndSetState(s, TRUE)) {// cas更新状态,避免并发更新true操作
releaseShared(0);//释放一下锁对象,唤醒一下阻塞的Thread
}
}
}
void innerSetFalse() {
for (;;) {
int s = getState();
if (s == FALSE) {
return; //直接退出
}
if (compareAndSetState(s, FALSE)) {//cas更新状态,避免并发更新false操作
setState(FALSE);
}
}
}
}
}
代码其实还是挺简单的,主要是对AQS的一份扩展实现。 对应的javadoc和使用说明:
简单测试代码:
@Test
public void test_init_true() {
BooleanMutex mutex = new BooleanMutex(true);
try {
mutex.get(); //不会被阻塞
} catch (InterruptedException e) {
want.fail();
}
}
@Test
public void test_init_false() {
final BooleanMutex mutex = new BooleanMutex(false);
try {
final CountDownLatch count = new CountDownLatch(1);
ExecutorService executor = Executors.newCachedThreadPool();
executor.submit(new Callable() {
public Object call() throws Exception {
Thread.sleep(1000);
mutex.set(true);
count.countDown();
return null;
}
});
mutex.get(); //会被阻塞,等异步线程释放锁对象
count.await();
executor.shutdown();
} catch (InterruptedException e) {
want.fail();
}
}
@Test
public void test_concurrent_true() {
try {
final BooleanMutex mutex = new BooleanMutex(true);
final CountDownLatch count = new CountDownLatch(10);
ExecutorService executor = Executors.newCachedThreadPool();
for (int i = 0; i < 10; i++) {
executor.submit(new Callable() {
public Object call() throws Exception {
mutex.get();
count.countDown();
return null;
}
});
}
count.await();
executor.shutdown();
} catch (InterruptedException e) {
want.fail();
}
}
@Test
public void test_concurrent_false() {
try {
final BooleanMutex mutex = new BooleanMutex(false);//初始为false
final CountDownLatch count = new CountDownLatch(10);
ExecutorService executor = Executors.newCachedThreadPool();
for (int i = 0; i < 10; i++) {
executor.submit(new Callable() {
public Object call() throws Exception {
mutex.get();//被阻塞
count.countDown();
return null;
}
});
}
Thread.sleep(1000);
mutex.set(true);
count.await();
executor.shutdown();
} catch (InterruptedException e) {
want.fail();
}
}
总结
- jdk中的A.Q.S代码还是非常精悍的,可以多多善于利用
- 单机版的互斥控制只是整个需求的第一步,会另起文章介绍整个分布式任务调度这一块,主要是基于zookeeper