1 二分查找/折半查找
思想:在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。
时间复杂度:折半搜索每次把搜索区域减少一半,时间复杂度为或log2(n)。(注意log2(n)和log(n)其实是同样的复杂度,因为它们之间仅仅差了一个常量系数而已)。(n代表集合中元素的个数)
空间复杂度:。虽以递归形式定义,但是尾递归,可改写为循环。
适用范围:优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。
最多最少:元素有序时折半查找:最多+1次,最少1次;元素无序只能顺序查找:最多n次,最少1次
public class BinarySearch {
/**
* 二分查找算法,非递归
*
* @param srcArray 有序数组
* @param des 查找元素
* @return des的数组下标,没找到返回-1
*/
public static int binarySearch(int[] srcArray, int des)
{
int low = 0;
int high = srcArray.length-1;
while(low <= high)
{
int middle = (low + high)/2;
if(des == srcArray[middle])
{
return middle;
}
else if(des <srcArray[middle])
{
high = middle - 1;
}
else
{
low = middle + 1;
}
}
return -1;
}
public static void main(String[] args)
{
int[] src = new int[] {1, 3, 5, 7, 8, 9};
System.out.println(binarySearch(src, 3));
}
}
//折半查找递归算法
//查询成功返回该对象的下标序号,失败时返回-1。
int BiSearch2(int r[],int low,int high,int k)
{
if(low>high)
return -1;
else
{
int mid=(low+high)/2;
if(r[mid]==k)
return mid;
else
if(r[mid]<k)
return BiSearch2(r,mid+1,high,k);
else
return BiSearch2(r,low,mid-1,k);
}
}
public static void main(String[] args) {
int r[]={1,2,3,4,5};
System.out.println(BiSearch2(r,1,5,5));
}
参考:http://zh.wikipedia.org/wiki/%E6%8A%98%E5%8D%8A%E6%90%9C%E7%B4%A2%E7%AE%97%E6%B3%95
http://www.2cto.com/kf/201212/172713.html
2 二叉排序树
又称二叉查找(搜索)树(Binary Search Tree)。其定义为:二叉排序树或者是空树,或者是满足如下性质的二叉树:
①若它的左子树非空,则左子树上所有结点的值均小于根结点的值;②若它的右子树非空,则右子树上所有结点的值均大于根结点的值;
③左、右子树本身又各是一棵二叉排序树。
对于二叉排序树的查找,从根结点出发,当访问到树中某个结点时,如果该结点的关键字值等于给定的关键字值,就宣布查找成功。反之,如果该结点的关键字值大 ( 小 ) 于已给的关键字值,下一步就只需考虑查找右 ( 左 ) 子树了。
需要先实现二叉排序树,再进行查找
private TreeNode root = null;
/**
* insert: 将给定关键字插入到二叉查找树中
* @param key 给定关键字
*/
public void insert(int key)
{
TreeNode parentNode = null;
TreeNode newNode = new TreeNode(key, null, null,null);
TreeNode pNode = root;
if (root == null) {
root = newNode;
return ;
}
while (pNode != null) {
parentNode = pNode;
if (key < pNode.key) {
pNode = pNode.leftChild;
}
else if (key > pNode.key) {
pNode = pNode.rightChild;
} else {
// 树中已存在匹配给定关键字的结点,则什么都不做直接返回
return ;
}
}
if (key < parentNode.key) {
parentNode.leftChild = newNode;
newNode.parent = parentNode;
}
else {
parentNode.rightChild = newNode;
newNode.parent = parentNode;
}
}
/**
* search: 在二叉查找树中查询给定关键字
* @param key 给定关键字
* @return 匹配给定关键字的树结点
*/
public TreeNode search(int key)
{
TreeNode pNode = root;
while (pNode != null && pNode.key != key) {
if (key < pNode.key) {
pNode = pNode.leftChild;
}
else {
pNode = pNode.rightChild;
}
}
return pNode;
}
最坏情况下,当先后插入的关键字有序时,构成的二叉排序树蜕变为
单支树
,树的深度为
,其平均查找长度为
(和顺序查找相同),最好的情况是二叉排序树的形态和折半查找的判定树相同,其平均查找长度和
成正比(
)
3哈希
二分法平均查找效率是O(logn),但是需要数组是排序的。如果没有排过序,就只好先用O(nlogn)的预处理为它排个序了。而且它的插入比较困难,经常需要移动整个数组,所以动态的情况下比较慢。 哈希查找理想的插入和查找效率是O(1),但条件是需要找到一个良好的散列函数,使得分配较为平均。另外,哈希表需要较大的空间,至少要比O(n)大几倍,否则产生冲突的概率很高。 二叉排序树查找也是O(logn)的,关键是插入值时需要做一些处理使得它较为平衡(否则容易出现轻重的不平衡,查找效率最坏会降到O(n))