所谓“筛选法”指的是“埃拉托色尼(Eratosthenes)筛法”。他是古希腊的著名数学家。他采取的方法是,在一张纸上写上1到100全部整数,然后逐个判断它们是否是素数,找出一个非素数,就把它挖掉,最后剩下的就是素数。
具体做法如下:
<1> 先将1挖掉(因为1不是素数)。
<2> 用2去除它后面的各个数,把能被2整除的数挖掉,即把2的倍数挖掉。
<3> 用3去除它后面的各数,把3的倍数挖掉。
<4> 分别用4、5…各数作为除数去除这些数以后的各数。这个过程一直进行到在除数后面的数已全被挖掉为止。例如找1~50的素数,要一直进行到除数为47为止(事实上,可以简化,如果需要找1~n范围内素数表,只需进行到除数为n^2(根号n),取其整数即可。例如对1~50,只需进行到将50^2作为除数即可。)
如上算法可表示为:
<1> 挖去1;
<2> 用刚才被挖去的数的下一个数p去除p后面各数,把p的倍数挖掉;
<3> 检查p是否小于n^2的整数部分(如果n=1000, 则检查p<31?),如果是,则返回(2)继续执行,否则就结束;
<4> 纸上剩下的数就是素数。
图片示例:
[img]http://dl.iteye.com/upload/picture/pic/130249/f69e742f-a9bf-3761-9f41-688abf155965.gif[/img]
[color=red][size=large][b]转载出处:[/b][/size][/color]
[url]http://tieba.baidu.com/p/2442566054#[/url]
[url]http://blog.csdn.net/program_think/article/details/7032600[/url]
[url]http://blog.chinaunix.net/uid-9078996-id-2010292.html[/url]
具体做法如下:
<1> 先将1挖掉(因为1不是素数)。
<2> 用2去除它后面的各个数,把能被2整除的数挖掉,即把2的倍数挖掉。
<3> 用3去除它后面的各数,把3的倍数挖掉。
<4> 分别用4、5…各数作为除数去除这些数以后的各数。这个过程一直进行到在除数后面的数已全被挖掉为止。例如找1~50的素数,要一直进行到除数为47为止(事实上,可以简化,如果需要找1~n范围内素数表,只需进行到除数为n^2(根号n),取其整数即可。例如对1~50,只需进行到将50^2作为除数即可。)
如上算法可表示为:
<1> 挖去1;
<2> 用刚才被挖去的数的下一个数p去除p后面各数,把p的倍数挖掉;
<3> 检查p是否小于n^2的整数部分(如果n=1000, 则检查p<31?),如果是,则返回(2)继续执行,否则就结束;
<4> 纸上剩下的数就是素数。
图片示例:
[img]http://dl.iteye.com/upload/picture/pic/130249/f69e742f-a9bf-3761-9f41-688abf155965.gif[/img]
int main() {
int num = 100;
int a[101];
for(int i=0; i<=101; i++) {
a[i] = i;
}
a[1] = 0;
for (int i=2; i<sqrt(num); i++) {
for (int j=i+1; j<=num; j++) {
if (a[j]!=0 && a[j]%i==0) {
a[j] = 0;
}
}
}
for(int i=1, n=0; i<=100; i++) {
if (a[i] != 0) {
printf("%d\t", a[i]);
if(++n%10 == 0) {
printf("\n");
}
}
}
printf("\n");
return 0;
}
[color=red][size=large][b]转载出处:[/b][/size][/color]
[url]http://tieba.baidu.com/p/2442566054#[/url]
[url]http://blog.csdn.net/program_think/article/details/7032600[/url]
[url]http://blog.chinaunix.net/uid-9078996-id-2010292.html[/url]