回归算法的学习路径

本文详细介绍了回归算法的学习过程,包括线性回归的基本思想、正态分布及其在算法中的应用、极限、导数等数学概念在求解残差最小值中的作用、全微分和偏微分在最小二乘法中的应用、F检验用于评估回归效果、t统计量和z统计量的理解、置信区间的计算以及逻辑回归的算法思想、logistic变换函数和极大似然估计等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在学习回归算法过程中,一路遇到不少问题,数学和算法方面的基础薄弱,因此采用的策略是深度优先的学习方法,从头到脚看算法,遇到不懂的概念就跳转如相关概念或算法的学习。

1.线性回归基本算法思想

2.正态分布:其中的随机误差符合正态分布

3.极限,导数,方向导数,梯度,梯度下降法求残差最小值;

4.全微分,偏微分,最小二乘法求残差最小值;

5.回归效果的显著性检查F检验:考察各直线对各个变量的拟合程度好坏,是否真正体现了一种线性关系;

6.t统计量和z统计量

6.置信区间,置信度的计算;

7.逻辑回归基本算法思想;

8.logistic 变换函数

9.极大似然估计,对数似然函数

 

总体下来一个简单的回归算法对初学者也并不轻松,用这样的学习方式开头比较慢,随着基础渐渐稳固,以后的学习效率将会不断提高

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值