t统计量和z统计量

z统计和t统计可以用来检验两个平均数之间差异显著的程度,z适合大样本的情况(样本数大于30),t适合小样本的情况。

z检验的步骤:

第一步:建立虚无假设 H01 = μ2 ,即先假定两个平均数之间没有显著差异,

  第二步:计算统计量Z值,对于不同类型的问题选用不同的统计量计算方法,

  1、如果检验一个样本平均数(\bar{X})与一个已知的总体平均数(μ0)的差异是否显著。其Z值计算公式为:

  Z=\frac{\bar{X}-\mu_0}{\frac{S}{\sqrt{n}}}

  其中:

  • \bar{X}是检验样本的平均数;
  • μ0是已知总体的平均数;
  • S是样本的标准差
  • n是样本容量。

  2、如果检验来自两个的两组样本平均数的差异性,从而判断它们各自代表的总体的差异是否显著。其Z值计算公式为:

  Z=\frac{\bar{X_1}-\bar{X_2}}{\sqrt{\frac{S_1}{n_1}+\frac{S_2}{n_2}}}

  其中:

  • \bar{X_1},\bar{X_2}是样本1,样本2的平均数;
  • S1,S2是样本1,样本2的标准差;
  • n1,n2是样本1,样本2的容量。

  第三步:比较计算所得Z值与理论Z值,推断发生的概率,依据Z值与差异显著性关系表作出判断。如下表所示:

Z值与P值关系
\left| Z \right|P值差异程度
\ge2.58\le0.01非常显著
\ge1.96\le0.05显著
<1.96>0.05不显著

  第四步:根据是以上分析,结合具体情况,作出结论。

 

以下是对Z统计和T统计的计算方法和区别的理解:

z统计是用来衡量样本均值偏离整体均值的方差倍数,就是偏离方差的程度。

根据中心极限定理,总体样本N,每次抽样数n,每次抽样的均值的分布趋近正态分布。也就是随机误差符合正态分布。其分布的数学期望为总体均值μ,方差为总体方差的1/n。

 

定义符号:

x:样本均值

μ:抽样均值,也等于总体均值

ss:抽样标准差

σ:总体的标准差

s:样本标准差

当我们想知道某次抽样的样本均值μi离总体均值有多少个标准差那么远,可以用如下算式来表示,称

这个值为Z统计:

样本均值-抽样分布均值/抽样分布标准差

 

这里通常抽样分布标准差不知道,而抽样分布标准差可以用总体标准差表示:

 ss=σ/n^1/2

因此z分布可以写成:

 这里总体的标准差也往往得不到,因此当抽样样本数大于30的时候

总体标准差可以近似地用样本标准差替代:

 

当样本数小于30的时候样本就不符合正态分布了,而是符合t分布,

t统计的值和z统计的区别是一个要查z统计值表,另一个是要查t统一值表。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值