美国工程师挣多少钱(from http://forum.eet-cn.com)

在美国不兴询问别人的工资,所以很难了解工程师们都挣多少钱。2005年看到过一个公开资料,列举了一些个人的工资情况,但不算统计资料。记得列举的资料中,工程师大概从刚毕业4-5W到资深的12-15W。相比之下供电公司和化学公司的工人可以到15W以上,管道工和医生可以到20W。不过管道工都有自己的工具车和一些设备,像是小业主一样,也雇用助手,医生也自己有诊所。卖保险和银行贷款员都可以到20W,一般公司老板20-30W。赖斯和拉姆斯菲尔德也在20W上下,小布也就30几W,大老板和明星之类就得百万千万的。

但是光看工资也不完全说明问题,福利的差别是非常大的。正式员工和顾问差别就很大,前者公司必交工资的约7-8%,作为你的社会保险,而非正式员工自己要交约15%。公司给买一个很昂贵的包罗万象的保险,把你的老婆孩子父母都包含了,那就是很大的一笔钱,非正式职工一般没有保险。另外很重要的一条就是,公司是否能按每年的通涨率给你加工资。如果不能等于你的薪水每年降3-5%,也许这就是老板不想要你的暗示。此外与美国经济情况也有关系,记得80年代末一个加州理工学院的博士毕业生,年薪到4W多,同学们就十分羡慕了。而到1999年同样学校的博士毕业就得7-8W了,而毕业没有工作的也是会有的。

总之美国工程师的薪水在美国社会的平均数以上(2005年的平均为3W多),但也就刚进入中产阶级之列。印象最深的是NASA的一位工程师,本科毕业50多岁,当年也就是6W多。无疑NASA的福利会很高,项目经费也是千百万的,这些人的社会地位很高,自己也非常自信骄傲。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值