Ø给定n个大小不等的圆c1,c2,…,cn,现要将这n个圆排进一个矩形框中,且要求各圆与矩形框的底边相切。圆排列问题要求从n个圆的所有排列中找出有最小长度的圆排列。
Ø例如,当n=3,且所给的3个圆的半径分别为1,1,2时,这3个圆的最小长度的圆排列如图所示。其最小长度为2+4√2。

void Circle::Backtrack(int t)
{
if (t>n) Compute();
else
for (int j = t; j <= n; j++) {
Swap(r[t], r[j]);
float centerx=Center(t);
if (centerx+r[t]+r[1]<min)
{//下界约束
x[t]=centerx;
Backtrack(t+1);}
Swap(r[t], r[j]);}
}
float Circle::Center(int t)
{// 计算当前所选择圆的圆心横坐标
float temp=0;
for (int j=1;j<t;j++) {
float valuex=x[j]+2.0*sqrt(r[t]*r[j]);
if (valuex>temp) temp=valuex;
}
return temp;
}
void Circle::Compute(void)
{// 计算当前圆排列的长度
float low=0,
high=0;
for (int i=1;i<=n;i++) {
if (x[i]-r[i]<low) low=x[i]-r[i];
if (x[i]+r[i]>high) high=x[i]+r[i];
}
if (high-low<min) min=high-low;
}
Ø上述算法尚有许多改进的余地。例如,象1,2,…,n-1,n和n,n-1, …,2,1这种互为镜像的排列具有相同的圆排列长度,只计算一个就够了,可减少约一半的计算量。
Ø另一方面,如果所给的n个圆中有k个圆有相同的半径,则这k个圆产生的k!
个完全相同的圆排列,只计算一个就够了。