环境:
MySQL 5.1
RedHat Linux AS 5
JavaSE 1.5
DbConnectionBroker 微型数据库连接池
测试的方案:
执行10万次Insert语句,使用不同方式。
A组:静态SQL,自动提交,没事务控制(MyISAM引擎)
1、逐条执行10万次
2、分批执行将10万分成m批,每批n条,分多种分批方案来执行。
B组:预编译模式SQL,自动提交,没事务控制(MyISAM引擎)
1、逐条执行10万次
2、分批执行将10万分成m批,每批n条,分多种分批方案来执行。
-------------------------------------------------------------------------------------------
C组:静态SQL,不自动提交,有事务控制(InnoDB引擎)
1、逐条执行10万次
2、分批执行将10万分成m批,每批n条,分多种分批方案来执行。
D组:预编译模式SQL,不自动提交,有事务控制(InnoDB引擎)
1、逐条执行10万次
2、分批执行将10万分成m批,每批n条,分多种分批方案来执行。
本次主要测试C、D组,并得出测试结果。
DROP TABLE IF EXISTS tuser;
CREATE TABLE tuser (
id bigint(20) NOT NULL AUTO_INCREMENT,
name varchar(12) DEFAULT NULL,
remark varchar(24) DEFAULT NULL,
createtime datetime DEFAULT NULL,
updatetime datetime DEFAULT NULL,
PRIMARY KEY (id)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;
// C、D组测试代码:
package testbatch;
import java.io.IOException;
import java.sql.*;
/**
* JDBC批量Insert优化(下)
*
* @author leizhimin 2009-7-29 10:03:10
*/
public class TestBatch {
public static DbConnectionBroker myBroker = null;
static {
try {
myBroker = new DbConnectionBroker("com.mysql.jdbc.Driver",
"jdbc:mysql://192.168.104.163:3306/testdb",
"vcom", "vcom", 2, 4,
"c:\\testdb.log", 0.01);
} catch (IOException e) {
e.printStackTrace();
}
}
/**
* 初始化测试环境
*
* @throws SQLException 异常时抛出
*/
public static void init() throws SQLException {
Connection conn = myBroker.getConnection();
conn.setAutoCommit(false);
Statement stmt = conn.createStatement();
stmt.addBatch("DROP TABLE IF EXISTS tuser");
stmt.addBatch("CREATE TABLE tuser (\n" +
" id bigint(20) NOT NULL AUTO_INCREMENT,\n" +
" name varchar(12) DEFAULT NULL,\n" +
" remark varchar(24) DEFAULT NULL,\n" +
" createtime datetime DEFAULT NULL,\n" +
" updatetime datetime DEFAULT NULL,\n" +
" PRIMARY KEY (id)\n" +
") ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8");
stmt.executeBatch();
conn.commit();
myBroker.freeConnection(conn);
}
/**
* 100000条静态SQL插入
*
* @throws Exception 异常时抛出
*/
public static void testInsert() throws Exception {
init(); //初始化环境
Long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
String sql = "\n" +
"insert into testdb.tuser \n" +
"\t(name, \n" +
"\tremark, \n" +
"\tcreatetime, \n" +
"\tupdatetime\n" +
"\t)\n" +
"\tvalues\n" +
"\t('" + RandomToolkit.generateString(12) + "', \n" +
"\t'" + RandomToolkit.generateString(24) + "', \n" +
"\tnow(), \n" +
"\tnow()\n" +
")";
Connection conn = myBroker.getConnection();
conn.setAutoCommit(false);
Statement stmt = conn.createStatement();
stmt.execute(sql);
conn.commit();
myBroker.freeConnection(conn);
}
Long end = System.currentTimeMillis();
System.out.println("单条执行100000条Insert操作,共耗时:" + (end - start) / 1000f + "秒!");
}
/**
* 批处理执行静态SQL测试
*
* @param m 批次
* @param n 每批数量
* @throws Exception 异常时抛出
*/
public static void testInsertBatch(int m, int n) throws Exception {
init(); //初始化环境
Long start = System.currentTimeMillis();
for (int i = 0; i < m; i++) {
//从池中获取连接
Connection conn = myBroker.getConnection();
conn.setAutoCommit(false);
Statement stmt = conn.createStatement();
for (int k = 0; k < n; k++) {
String sql = "\n" +
"insert into testdb.tuser \n" +
"\t(name, \n" +
"\tremark, \n" +
"\tcreatetime, \n" +
"\tupdatetime\n" +
"\t)\n" +
"\tvalues\n" +
"\t('" + RandomToolkit.generateString(12) + "', \n" +
"\t'" + RandomToolkit.generateString(24) + "', \n" +
"\tnow(), \n" +
"\tnow()\n" +
")";
//加入批处理
stmt.addBatch(sql);
}
stmt.executeBatch(); //执行批处理
conn.commit();
// stmt.clearBatch(); //清理批处理
stmt.close();
myBroker.freeConnection(conn); //连接归池
}
Long end = System.currentTimeMillis();
System.out.println("批量执行" + m + "*" + n + "=" + m * n + "条Insert操作,共耗时:" + (end - start) / 1000f + "秒!");
}
/**
* 100000条预定义SQL插入
*
* @throws Exception 异常时抛出
*/
public static void testInsert2() throws Exception { //单条执行100000条Insert操作,共耗时:40.422秒!
init(); //初始化环境
Long start = System.currentTimeMillis();
String sql = "" +
"insert into testdb.tuser\n" +
" (name, remark, createtime, updatetime)\n" +
"values\n" +
" (?, ?, ?, ?)";
for (int i = 0; i < 100000; i++) {
Connection conn = myBroker.getConnection();
conn.setAutoCommit(false);
PreparedStatement pstmt = conn.prepareStatement(sql);
pstmt.setString(1, RandomToolkit.generateString(12));
pstmt.setString(2, RandomToolkit.generateString(24));
pstmt.setDate(3, new Date(System.currentTimeMillis()));
pstmt.setDate(4, new Date(System.currentTimeMillis()));
pstmt.executeUpdate();
conn.commit();
pstmt.close();
myBroker.freeConnection(conn);
}
Long end = System.currentTimeMillis();
System.out.println("单条执行100000条Insert操作,共耗时:" + (end - start) / 1000f + "秒!");
}
/**
* 批处理执行预处理SQL测试
*
* @param m 批次
* @param n 每批数量
* @throws Exception 异常时抛出
*/
public static void testInsertBatch2(int m, int n) throws Exception {
init(); //初始化环境
Long start = System.currentTimeMillis();
String sql = "" +
"insert into testdb.tuser\n" +
" (name, remark, createtime, updatetime)\n" +
"values\n" +
" (?, ?, ?, ?)";
for (int i = 0; i < m; i++) {
//从池中获取连接
Connection conn = myBroker.getConnection();
conn.setAutoCommit(false);
PreparedStatement pstmt = conn.prepareStatement(sql);
for (int k = 0; k < n; k++) {
pstmt.setString(1, RandomToolkit.generateString(12));
pstmt.setString(2, RandomToolkit.generateString(24));
pstmt.setDate(3, new Date(System.currentTimeMillis()));
pstmt.setDate(4, new Date(System.currentTimeMillis()));
//加入批处理
pstmt.addBatch();
}
pstmt.executeBatch(); //执行批处理
conn.commit();
// pstmt.clearBatch(); //清理批处理
pstmt.close();
myBroker.freeConnection(conn); //连接归池
}
Long end = System.currentTimeMillis();
System.out.println("批量执行" + m + "*" + n + "=" + m * n + "条Insert操作,共耗时:" + (end - start) / 1000f + "秒!");
}
public static void main(String[] args) throws Exception {
init();
Long start = System.currentTimeMillis();
System.out.println("--------C组测试----------");
testInsert();
testInsertBatch(100, 1000);
testInsertBatch(250, 400);
testInsertBatch(400, 250);
testInsertBatch(500, 200);
testInsertBatch(1000, 100);
testInsertBatch(2000, 50);
testInsertBatch(2500, 40);
testInsertBatch(5000, 20);
Long end1 = System.currentTimeMillis();
System.out.println("C组测试过程结束,全部测试耗时:" + (end1 - start) / 1000f + "秒!");
System.out.println("--------D组测试----------");
testInsert2();
testInsertBatch2(100, 1000);
testInsertBatch2(250, 400);
testInsertBatch2(400, 250);
testInsertBatch2(500, 200);
testInsertBatch2(1000, 100);
testInsertBatch2(2000, 50);
testInsertBatch2(2500, 40);
testInsertBatch2(5000, 20);
Long end2 = System.currentTimeMillis();
System.out.println("D组测试过程结束,全部测试耗时:" + (end2 - end1) / 1000f + "秒!");
}
}
执行结果:
--------C组测试----------
单条执行100000条Insert操作,共耗时:103.656秒!
批量执行100*1000=100000条Insert操作,共耗时:31.328秒!
批量执行250*400=100000条Insert操作,共耗时:31.406秒!
批量执行400*250=100000条Insert操作,共耗时:31.75秒!
批量执行500*200=100000条Insert操作,共耗时:31.438秒!
批量执行1000*100=100000条Insert操作,共耗时:31.968秒!
批量执行2000*50=100000条Insert操作,共耗时:32.938秒!
批量执行2500*40=100000条Insert操作,共耗时:33.141秒!
批量执行5000*20=100000条Insert操作,共耗时:35.265秒!
C组测试过程结束,全部测试耗时:363.656秒!
--------D组测试----------
单条执行100000条Insert操作,共耗时:107.61秒!
批量执行100*1000=100000条Insert操作,共耗时:32.64秒!
批量执行250*400=100000条Insert操作,共耗时:32.641秒!
批量执行400*250=100000条Insert操作,共耗时:33.109秒!
批量执行500*200=100000条Insert操作,共耗时:32.859秒!
批量执行1000*100=100000条Insert操作,共耗时:33.547秒!
批量执行2000*50=100000条Insert操作,共耗时:34.312秒!
批量执行2500*40=100000条Insert操作,共耗时:34.672秒!
批量执行5000*20=100000条Insert操作,共耗时:36.672秒!
D组测试过程结束,全部测试耗时:378.922秒!
测试结果意想不到吧,最短时间竟然超过上篇。观察整个测试结果,发现总时间很长,原因是逐条执行的效率太低了。
结论:
在本测试条件下,得出结论:
数据库连接池控制下,不自动提交,事务控制(InnoDB引擎)
1、逐条执行的效率很低很低,尽可能避免逐条执行。
2、事务控制下,静态SQL的效率超过预处理SQL。
3、分批的大小对效率影响挺大的,一般来说,事务控制下,分批大小在100-1000之间比较合适。
4、谈到优化方式,上面的批处理就是很好的优化策略。
大总结:
对比上篇没事务的测试结果,得出一个全面的结论:
1、连接池最基本的也是最重要的优化策略,总能大幅提高性能。
2、批处理在效率上总是比逐条处理有优势,要处理的数据的记录条数越大,批处理的优势越明显,批处理还有一个好处就是减少了对数据库的链接次数,从而减轻数据库的压力。
3、批处理执行SQL的时候,批处理的分批的大小与数据库的吞吐量以及硬件配置有很大关系,需要通过测试找到最佳的分批大小,一般在50-1000之间。
4、预处理SQL在没事务的表上效率较高,在有实物的情况下比静态SQL稍有不及。但预定义SQL还有个好处就是消耗的内存较少,静态SQL串会占用大量的内存资源,容易导致内存溢出的问题。因此批量执行时候可以优先选择预定义SQL。
5、在批处理执行的时候,每批执行完成后,最好显式的调用pstmt.close()或stmt.close()方法,以便尽快释放执行过的SQL语句,提高内存利用率。
6、对于有大量SELECT操作,MyISAM是更好的选择;对于有大量INSERT和UPDATE操作的表,InnoDB效率更好。
7、虽然测试结果只能反映特定情况下的一些事实,以上的优化策略是普遍策略,可以明显缩短寻找最优策略的时间,对于效率要求很高的程序,还应该做并发性等测试。
8、测试是件很辛苦的事情,你需要有大量的事实来证明你的优化是有效的,而不能单单凭经验,因为每个机器的环境都不一样,使用的方式也不同。