const int HashTableSize=10000;
int getHash(int key)
{
return key%HashTableSize;
}
struct hashNode
{
int data;
struct hashNode* next;
};
struct hashMap
{
hashNode map[HashTableSize];
hashMap()
{
int i;
for(i=0;i<HashTableSize;++i)
{
map[i].data=-1;
map[i].next=NULL;
}
}
~hashMap()
{
int i;
hashNode* j,*k;
for(i=0;i<HashTableSize;++i)
{
if(map[i].next!=NULL)
{
j=map[i].next;
k=j->next;
while(k!=NULL)
{
delete j;
j=k;
}
delete j;
}
}
}
void push(int value)
{
int key=getHash(value);
hashNode *j=map+key;
while(j->data!=-1 && j->next )
{
if(j->data == value ) return;
j=j->next;
}
j->data = value;
hashNode* k=new hashNode;
k->data=-1;
k->next=NULL;
j->next=k;
}
void show()
{
int i;
for(i=0;i<HashTableSize;++i)
{
if(map[i].data!=-1)
{
hashNode* j=map+i;
while(j->next!=NULL)
{
cout<<j->data<<" ";
j=j->next;
}
cout<<j->data<<endl;
}
}
}
hashNode* find(int value)
{
int key =getHash(value);
if( map[key].data != value )
{
hashNode* i=map[key].next;
while( i != NULL)
{
if(i->data ==value) return i;
i=i->next;
}
}
else{return map+key;}
return NULL;
}
};
void dataInit()//生成数据
{
int i;
ofstream file(".//data.txt");
if(!file.is_open())
{
cout<<"NO File!"<<endl;
}
srand((int)time(0));
for(i=0;i<1000000;++i)//生成的整数数量
{
file << rand()%1000000<<" ";//控制数据的范围
}
file.close();
}
int main()
{
int i;
static int num=0;
hashMap map;
ifstream filein(".//data.txt");
if(!filein.is_open())
{
cout<<"No file!"<<endl;
return -1;
}
while( filein>>i )
{
num++;
map.push(i);
}
cout<<"read in "<<num<<" numbers!"<<endl;
map.show();
while( cin>> i)
{
if(map.find(i)!=NULL)
{
cout<<i<<" is exist!"<<endl;
}
else
{
cout<<i<<" no find!"<<endl;
}
}
return 0;
}
纠结了一个早上,简单的实现了一个哈希表,采用最最简单的除法散列法(其他还有乘法散列)设计一个好的全域散列可以大幅提升哈希的表现。对于冲突碰撞采用的是拉链法,除此之外还有线性探查,二次探查,双重散列等。但我从了解哈希以来一直就对拉链法情有独钟,虽然不知道为什么。。 据说暴雪的MPQ文件就是一个哈希的例子,可以好好学习下。发现写写代码原来不明白的东西一下就懂了。。查找速度确实很快,当然我测试的数据量只到1000000。。几乎是在一瞬间就反应了。
不多说了,直接上代码,欢迎给点修改意见。
附上百度文库下来的关于字符串Hash值 函数的比较。