各种基本算法实现小结(七)—— 常用算法

各种基本算法实现小结(七)—— 常用算法

(均已测试通过)

======================================================================

1、判断素数

测试环境:VC 6.0 (C)

运行结果:

   

==========================================================

2、 求2-1000之间的所有素数

测试环境:VC 6.0 (C)

运行结果:

==========================================================

3、 验证哥德巴赫猜想

哥德巴赫猜想:任意一个大于等于6的偶数都可以分解为两个素数之和

如: 6 = 3+3;100 = 3+97=11+89; 1000 = 3+997=59+941=。。。

 

测试环境:VC 6.0 (C)

运行结果:

      

==========================================================

4、 求最大公约数(GCD)和最小公倍数(LCM)

测试环境:VC 6.0 (C)

运行结果:

==========================================================

5、统计个数(数字)

用随机函数产生100个[0,99]范围内的随机整数,

统计个位上的数字分别为0,1,2,3,4,5,6,7,8,9的数的个数并打印出来

测试环境:VC 6.0 (C)

运行结果:

==========================================================

6、统计个数(数字、字符、其它字符)

输入一行字符,统计其中有多少个数字、字符和其它字符

测试环境:VC 6.0 (C)

运行结果:

==========================================================

7、 数制转换(递归实现)

本算法仅实现了基数为2-16的数制转换

如果大家希望扩展范围,仅需要对基数表示字符case 进行扩展即可,如G、H、I ...

测试环境:VC 6.0 (C)

运行结果:

        

 

算法改进

数制直接转为字符输出,扩展支持16进制以上的数制转换

运行结果(扩展进制):

                

100 = 4*24+4            1000=1*24*24+17*24+16  10000=17*24*24+8*24+16        1000=27*36+28

==========================================================

8、 数制转换(栈实现)


 

核心思想和递归实现类似,都是压栈的原理,实现较简单,请自己尝试实现

==========================================================

9、 水仙花数

水仙花数简述: 水仙花数是指一个 n 位数 ( n≥3 ),它的每个位上的数字的 n 次幂之和等于它本身。

如:153=1^3+5^3+3^3(3位数);1634=1^4+6^4+3^4+4^4(4位数);54748=5^5+4^5+7^5+4^5+8^5(5位数)

 

判断任一3位数,是否为水仙花数

测试环境:GCC

运行结果(Redhat Linux):

================================================

求4位数的水仙花数(1000<=X<=9999)

测试环境:VC 6.0 (C)

运行结果:

================================================

思考:如果求得高精度大数的水仙花数,如8位、18位、28位的水仙花数(需考虑计算机精度,可采用数组或指针实现,大数计算)

==========================================================

10、 大数计算

大数运算:参加的值和计算结果通常是以上百位数,上千位数以及更大长度之间的整数运算,早已超出了计算机能够表示数值的精度范围(2^32=4294967296或2^64=18446744073709551616)即64位机最大也才20位,因此需要想出其它的办法计算大数。

 

求任意两整数之和(1000位以内)

测试环境:VC 6.0 (C)

运行结果:

   

思考:请大家自己设计实现更复杂的大数减法、乘法、除法,求余、求幂、求最小公倍数等大数运算(提示:可用数组或链表)

==========================================================


参考推荐:

学习算法之路

各种基本算法实现小结(一)—— 链 表

各种基本算法实现小结(二)—— 堆 栈

各种基本算法实现小结(三)—— 树与二叉树

各种基本算法实现小结(四)—— 图及其遍历

各种基本算法实现小结(五)—— 排序算法

各种基本算法实现小结(六)—— 查找算法

各种基本算法实现小结(七)—— 常用算法


阅读更多
版权声明:本文为米扑博客原创文章,未经米扑博客允许不得转载。 https://blog.csdn.net/sunboy_2050/article/details/5645837
个人分类: Algorithm C/C++/C#
上一篇各种基本算法实现小结(六)—— 查找算法
下一篇 学习算法之路(转)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭