一家有两个孩子,已知至少有一个孩子是在星期二出生的男孩。问:两个孩子都是男孩的概率是多大?

这道题想都没想就选了 0.5,第二个孩子是男是女不是一样吗!!!

然而答案是 13/27

好吧,让我们来昧着初心解释一下:

把这道题必须用贝叶斯公式来做,因为我也无法凭空想出 “周二出生” 这个观测信息会给后验概率带来多少改变。


贝叶斯公式:
P ( 2 男 ∣ 至 少 1 男 周 二 ) = P ( 2 男 , 至 少 1 男 周 二 ) P ( 至 少 1 男 周 二 ) = P ( 至 少 1 男 周 二 ∣ 2 男 ) P ( 2 男 ) P ( 至 少 1 男 周 二 ) P(2男|至少1男周二) = \frac{P(2男 ,至少1男周二)}{P(至少1男周二)} = \frac{P(至少1男周二|2男)P(2男)}{P(至少1男周二)} P(21)=P(1)P(21)=P(1)P(12)P(2)
实际上,更严谨一点的表示:
P ( 2 男 ∣ 至 少 1 男 周 二 , 2 孩 ) = P ( 2 男 , 至 少 1 男 周 二 ∣ 2 孩 ) P ( 至 少 1 男 周 二 ∣ 2 孩 ) = P ( 至 少 1 男 周 二 ∣ 2 男 , 2 孩 ) P ( 2 男 ∣ 2 孩 ) P ( 至 少 1 男 周 二 ∣ 2 孩 ) P(2男|至少1男周二,2孩) = \frac{P(2男 ,至少1男周二|2孩)}{P(至少1男周二|2孩)} = \frac{P(至少1男周二|2男,2孩)P(2男|2孩)}{P(至少1男周二|2孩)} P(212)=P(12)P(212)=P(12)P(122)P(22)
or:
P ( 2 男 ∣ 至 少 1 男 周 二 , 2 孩 ) = P ( 2 男 , 至 少 1 男 周 二 ∣ 2 孩 ) P ( 至 少 1 男 周 二 ∣ 2 孩 ) = P ( 至 少 1 男 周 二 ∣ 2 男 ) P ( 2 男 ∣ 2 孩 ) P ( 至 少 1 男 周 二 ∣ 2 孩 ) P(2男|至少1男周二,2孩) = \frac{P(2男 ,至少1男周二|2孩)}{P(至少1男周二|2孩)} = \frac{P(至少1男周二|2男)P(2男|2孩)}{P(至少1男周二|2孩)} P(212)=P(12)P(212)=P(12)P(12)P(22)


下面就来计算等式右边的各项概率了:

  1. P ( 至 少 1 男 周 二 ∣ 2 男 ) = 1 − P ( 0 男 周 二 ∣ 2 男 ) = 1 − 6 7 × 6 7 = 13 49 P(至少1男周二|2男) = 1-P(0男周二|2男) = 1-\frac{6}{7}\times \frac{6}{7} = \frac{13}{49} P(12)=1P(02)=176×76=4913
  2. P ( 2 男 ∣ 2 孩 ) = 1 4 P(2男|2孩) = \frac{1}{4} P(22)=41

P ( 至 少 1 男 周 二 ∣ 2 孩 ) = P ( 至 少 1 男 周 二 ∣ 2 男 ) P ( 2 男 ∣ 2 孩 ) + P ( 至 少 1 男 周 二 ∣ 1 男 1 女 ) P ( 1 男 1 女 ∣ 2 孩 ) + P ( 至 少 1 男 周 二 ∣ 2 女 ) P ( 2 女 ∣ 2 孩 ) = 13 49 × 1 4 + 1 7 × 1 2 + 0 \begin{array}{ll} &P(至少1男周二|2孩) \\\\ =& P(至少1男周二|2男)P(2男|2孩) \\ &+ P(至少1男周二|1男1女)P(1男1女|2孩) \\ &+ P(至少1男周二|2女)P(2女|2孩) \\\\ =&\frac{13}{49} \times \frac{1}{4}+ \frac{1}{7}\times \frac{1}{2} + 0 \end{array} ==P(12)P(12)P(22)+P(111)P(112)+P(12)P(22)4913×41+71×21+0

所以
P ( 2 男 ∣ 至 少 1 男 周 二 , 2 孩 ) = 13 27 P(2男|至少1男周二,2孩) = \frac{13}{27} P(212)=2713

©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页