这不能算是一道概率题啊大哥!
两个特例
特例1: x + y < 1 x+y < 1 x+y<1——两个随机数之和小于1
结果是紫色部分,为 1 / 2 1/2 1/2
特例2: x + y + z < 1 x+y+z< 1 x+y+z<1——三个随机数之和小于1
结果为深底下面的,占整个体积的
1
/
6
1/6
1/6
锥
体
积
=
1
/
3
∗
底
面
积
∗
高
=
1
/
3
∗
1
/
2
∗
1
∗
1
锥体积=1/3*底面积*高=1/3 * 1/2 * 1 *1
锥体积=1/3∗底面积∗高=1/3∗1/2∗1∗1
这个 1/6 可以利用截面与底面的相似比关系,通过简单的积分求得:
∫
0
1
x
2
2
d
x
=
1
/
6
\int_0^1 \frac{x^2}{2} dx = 1/6
∫012x2dx=1/6
推广
四个 0 到 1 之间的随机数之和小于 1 的概率就等于四维立方体一角的 “体积”,它的 “底面” 是一个体积为 1/6 的三维体,在第四维上对其进行积分便可得到其“体积”
∫
0
1
(
x
3
)
∗
1
/
6
d
x
=
1
/
24
\int_0^1 (x^3)*1/6 dx = 1/24
∫01(x3)∗1/6dx=1/24
依此类推, n 个随机数之和不超过 1 的概率就是 1/n! ,反过来 n 个数之和大于 1 的概率就是 1 – 1/n! ,因此加到第 n 个数才刚好超过 1 的概率就是
(
1
–
1
/
n
!
)
–
(
1
–
1
/
(
n
−
1
)
!
)
=
(
n
−
1
)
/
n
!
(1 – 1/n!) – (1 – 1/(n-1)!) = (n-1)/n!
(1–1/n!)–(1–1/(n−1)!)=(n−1)/n!
因此,要想让和超过 1 ,需要累加的期望次数为
∑
n
=
2
∞
n
∗
(
n
−
1
)
/
n
!
=
∑
n
=
1
∞
n
/
n
!
=
e
\sum_{n=2}^\infty n * (n-1)/n! = \sum_{n=1}^\infty n/n! = e
n=2∑∞n∗(n−1)/n!=n=1∑∞n/n!=e