1. 引言
随着电子商务的快速发展,尤其是服装电商的迅猛崛起,传统的线下购物体验已经逐渐向线上转移。尽管线上购物便利,但顾客常常面临着无法亲自试穿商品的困扰,这也导致了较高的退货率和客户体验的不佳。为了弥补这一缺陷,智能试衣间技术应运而生,通过深度学习和增强现实技术,顾客可以在虚拟环境中试穿不同款式的衣物,获得更加个性化的穿搭推荐,从而提高在线购物的体验。
本文将使用YOLOv8(You Only Look Once version 8)目标检测算法和UI界面技术,构建一个智能试衣间搭配推荐系统。系统能够通过检测用户的身体部位,并根据用户的个人风格和衣物的匹配度,推荐适合的搭配。本文将详细介绍该系统的实现过程,包括数据集选择、YOLOv8模型训练、系统搭建、推荐算法、UI界面设计等方面。
2. 系统需求与挑战
2.1 系统目标
本系统的目标是提供一个基于图像的智能试衣间解决方案,能够实现以下功能:
- 用户姿态识别与衣物检测:通过YOLOv8模型实时检测用户身上的衣物及其相关部位,如上衣、裤子、鞋子等。
- 衣物搭配推荐