同阶矩阵 A 和 B 相似的充要条件:特征多项式相同,即
∣
λ
I
−
A
∣
=
∣
λ
I
−
B
∣
|\lambda I - A| = |\lambda I - B|
∣λI−A∣=∣λI−B∣
引理:假设
A
∈
R
m
×
n
A \in \R^{m \times n}
A∈Rm×n,
B
∈
R
n
×
m
B \in \R^{n \times m}
B∈Rn×m
[
A
B
0
B
0
]
(
m
+
n
)
×
(
m
+
n
)
∼
[
0
0
B
B
A
]
(
m
+
n
)
×
(
m
+
n
)
\left[\begin{matrix} AB & 0 \\ B & 0 \end{matrix} \right]_{(m+n)\times(m+n)} \sim \left[\begin{matrix} 0 & 0 \\ B & BA \end{matrix} \right]_{(m+n)\times(m+n)}
[ABB00](m+n)×(m+n)∼[0B0BA](m+n)×(m+n)
证明:
[
I
m
−
A
I
n
]
[
A
B
0
B
0
]
[
I
m
A
I
n
]
=
[
0
0
B
B
A
]
\left[\begin{matrix} I_m & -A \\ & I_n \end{matrix} \right] \left[\begin{matrix} AB & 0 \\ B & 0 \end{matrix} \right] \left[\begin{matrix} I_m & A \\ & I_n \end{matrix} \right]= \left[\begin{matrix} 0 & 0 \\ B & BA \end{matrix} \right]
[Im−AIn][ABB00][ImAIn]=[0B0BA]
由引理和相似的充要条件可得:
∣
λ
I
m
−
A
B
0
B
λ
I
n
∣
=
∣
λ
I
m
0
B
λ
I
n
−
B
A
∣
\left|\begin{matrix} \lambda I_m-AB & 0 \\ B & \lambda I_n \end{matrix} \right|= \left|\begin{matrix} \lambda I_m & 0 \\ B & \lambda I_n -BA \end{matrix} \right|
∣∣∣∣λIm−ABB0λIn∣∣∣∣=∣∣∣∣λImB0λIn−BA∣∣∣∣因此有
∣
λ
I
m
−
A
B
∣
λ
n
=
λ
m
∣
λ
I
n
−
B
A
∣
|\lambda I_m-AB|\lambda^n = \lambda^m |\lambda I_n -BA|
∣λIm−AB∣λn=λm∣λIn−BA∣
特别的,如果
m
=
n
m = n
m=n, 即可推出 AB 相似于 BA,因为
∣
λ
I
−
A
B
∣
=
∣
λ
I
−
B
A
∣
.
|\lambda I-AB| = |\lambda I -BA|.
∣λI−AB∣=∣λI−BA∣.
由此可以得到一些有趣的结论,比如
∀
x
,
y
∈
R
n
×
1
\forall x,y \in \R^{n \times 1}
∀x,y∈Rn×1,
x
y
T
xy^T
xyT 可以对角化。
因为
x
y
T
=
[
x
1
⋮
x
n
]
n
×
1
[
y
1
⋯
y
n
]
1
×
n
=
[
x
1
0
⋯
0
⋮
⋮
⋮
x
n
0
⋯
0
]
n
×
n
[
y
1
⋯
y
n
0
⋯
0
⋮
⋮
0
⋯
0
]
n
×
n
xy^T = \left[\begin{matrix} x_1 \\ \vdots \\ x_n \end{matrix} \right]_{n\times 1} \left[\begin{matrix} y_1 & \cdots & y_n \end{matrix} \right]_{1\times n}= \left[\begin{matrix} x_1 & 0 & \cdots &0\\ \vdots & \vdots && \vdots \\ x_n & 0 & \cdots & 0 \end{matrix} \right]_{n\times n} \left[\begin{matrix} y_1 & \cdots & y_n\\ 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \end{matrix} \right]_{n\times n}
xyT=⎣⎢⎡x1⋮xn⎦⎥⎤n×1[y1⋯yn]1×n=⎣⎢⎡x1⋮xn0⋮0⋯⋯0⋮0⎦⎥⎤n×n⎣⎢⎢⎢⎡y10⋮0⋯⋯⋯yn0⋮0⎦⎥⎥⎥⎤n×n
将扩充的矩阵记为 X 和 Y,则有
X
Y
∼
Y
X
XY\sim YX
XY∼YX, 即
x
y
T
=
X
Y
∼
Y
X
=
[
y
1
⋯
y
n
0
⋯
0
⋮
⋮
0
⋯
0
]
n
×
n
[
x
1
0
⋯
0
⋮
⋮
⋮
x
n
0
⋯
0
]
n
×
n
=
[
y
T
x
0
⋯
0
0
0
⋯
0
⋮
⋮
⋮
0
0
⋯
0
]
n
×
n
xy^T = XY \sim YX = \left[\begin{matrix} y_1 & \cdots & y_n\\ 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \end{matrix} \right]_{n\times n} \left[\begin{matrix} x_1 & 0 & \cdots &0\\ \vdots & \vdots && \vdots \\ x_n & 0 & \cdots & 0 \end{matrix} \right]_{n\times n}\\= \left[\begin{matrix} y^Tx &0&\cdots &0\\ 0 & 0&\cdots & 0\\ \vdots & \vdots& & \vdots\\ 0 & 0 &\cdots & 0 \end{matrix} \right]_{n\times n}
xyT=XY∼YX=⎣⎢⎢⎢⎡y10⋮0⋯⋯⋯yn0⋮0⎦⎥⎥⎥⎤n×n⎣⎢⎡x1⋮xn0⋮0⋯⋯0⋮0⎦⎥⎤n×n=⎣⎢⎢⎢⎡yTx0⋮000⋮0⋯⋯⋯00⋮0⎦⎥⎥⎥⎤n×n
可见
x
y
T
xy^T
xyT 相似于对角阵。