背包问题总结

本篇记录各种背包问题及解决思路:

1. 0-1背包问题

问题:有N件物品和一个容量为V的背包。第i件物品的价值是c[i],体积是v[i]。求解将哪些物品装入背包可使价值总和最大。总所周知,该问题使用动态规划来求解,且状态转移方程为:

                                          

下面用具体例子来解释:当 N = 4,V = 8 时,价值数组为 c[] = {3,4,5,8},v[] = {2,3,4,5}。对于本题我们要求的答案就是 dp[4][8] 的值,根据状态转移方程可以得到:

dp[i][j]代表当背包容量为j处理(分为装或者不装两种)第i件物品时可以达到的最大价值,j比物品i的体积小时说明放不下了,那么就不装,此时dp[i][j] = dp[i-1][j],代表容量为j处理物品i的最大价值与处理物品i-1时的最大价值相同。若可以放的下,我们需要考虑装进去价值大还是不装价值大,那么为什么装进去的价值是 dp[i-1][j-v[i]] + c[i] 呢?因为只有刚刚好装进去(装满背包)才能达到理论上的最大价值,那么 dp[i-1][j-v[i]] 就代表当容量正好剩余物品i的体积且处理上一个物品时的最大值,再加上物品i的价值则为装入可得的最大值,两者取大即可得到 dp[i][j]。

//0-1背包问题(二维数组)
//n代表物品数量,v代表背包体积,product[0]为物品价值数组,product[1]为物品体积数组
private static int packageProblem(int n, int v, int[][] product) {
        int[][] result = new int[n + 1][v + 1];
        for (int i = 1; i <= n; i++) {//物品
            for (int j = 1; j <= v; j++) {//容量
                if (j < product[i - 1][1])
                    result[i][j] = result[i - 1][j];
                else {
                    result[i][j] = Math.max(result[i - 1][j], (result[i - 1][j - product[i - 1][1]] + product[i - 1][0]));
                }
            }
        }
        return result[n][v];
    }

优化:

如果手动实现过dp数组就可以发现,求d[i][j]只与上一行(d[i-1]行)的数据有关,那么我们可以将二维dp数组用一维来实现,由于每次使用的是上一行靠前的元素([j-v[i]]),可以采用倒序循环来更新数组,就可以实现利用前面的数据后再修改。

//0-1背包问题(一维数组)
private static int packageProblem1(int n, int v, int[][] product) {
        int[] result = new int[v + 1];
        for (int i = 0; i < n; i++) {//物品
            for (int j = v; j > 0; j--) {//容量
                //如果装不下就保持原值,所以不需要有操作
                if (j >= product[i][1])
                    result[j] = Math.max(result[j],(result[j-product[i][1]]+product[i][0]));
            }
        }
        return result[v];
    }

初始化的细节问题(引自背包九讲

我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。

如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。

为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。

这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始化进行讲解。

练习

参考视频

2.完全背包

在0-1背包的基础上令这N件物品的数量为无穷大,则问题化为完全背包问题,即每一件物品可以取任意多个,不是只有装或不装两种状态。

3.背包

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值