- 博客(429)
- 资源 (1)
- 收藏
- 关注
原创 AIDD-人工智能药物设计-AI 选对接算法,准确率提升 15%,但有个前提
MIT 的一项新研究提供了一个新视角,直接探究这些模型的内部运作,好比掀开它们的「头盖骨」一探究竟。更重要的是,它提供了一种诊断思路:它用数据证明,计算辅助药物发现的瓶颈,或许在于底层模拟方法的稳健性和可重复性,而非 AI 模型本身。MolAS 如同一个项目主管,它不直接执行对接,而是先分析蛋白质和配体的分子特征,然后为其匹配最合适的对接算法,例如为某个任务选择 Vina,为另一个选择 Glide。这些模型的输入五花八门:有的读取 SMILES 字符串,有的将分子看作图,还有的直接处理分子的三维结构。
2025-12-15 10:33:04
860
原创 AIDD-人工智能药物设计-StructGuy:破解蛋白变异预测的数据泄漏难题
基于 AI 的蛋白质变异效应预测存在一个普遍问题:数据泄漏。许多模型在测试集上表现优异,是因为训练时接触过相似的序列或同源蛋白。一旦面对训练集中未出现过的全新蛋白质,这些模型的表现就会急剧下降,这在创新靶点药物研发中难以接受。。研究者将重点放在了数据的「纯净度」上。他们构建了一个基于 MAVE (多重变异效应分析) 实验的专用数据集,并对其进行严格清洗和分割,确保训练集和测试集之间没有重叠。这样训练出的模型,才真正具备对未知蛋白质的泛化能力。
2025-12-14 11:03:49
190
原创 AIDD-人工智能药物设计-扩散模型热力学:从 AI 提取物理能量
扩散模型的核心是加噪与去噪。这对业界的启示是,要实现精准医疗,特别是针对耐药突变的药物设计,不能仅依赖大语言模型(Large Language Model, LLM)处理序列。他们从文献和数据库中挖掘了过去被忽略的细节:氨基酸的替换、插入、缺失,以及关键的磷酸化修饰,最终整理出 4032 对新的激酶 - 配体数据。GeneGPT 曾展示了大语言模型(LLM)在生物医药领域的潜力,而 OpenBioLLM 提出了不同于 GeneGPT 单体(Monolithic)架构的方案:组建由「专家」构成的团队。
2025-12-14 11:01:10
824
原创 AIDD-人工智能药物设计-StoL:像搭乐高一样用扩散模型构建大分子 3D 构象
主流的 k-mer 或字节对编码(BPE)难以应对基因组极不均匀的信息密度:高密度编码区哪怕一个碱基的变动都至关重要,而大段重复序列则包含极低信息量。但在药物化学家眼中,苯环上的碳(sp2 杂化)与连着四个单键的碳(sp3 杂化)天壤之别:它们的空间占据、电子云分布及反应活性截然不同。在数据丰富靶点上学到的规律,可辅助预测数据稀缺靶点,这对仅有少量活性数据的孤儿受体极具实用价值。但这依然是计算化学领域的一次巧妙尝试,它展示了解决复杂问题的有效路径:将其拆解为我们已经能解决的简单问题。
2025-12-03 10:41:01
439
原创 AIDD-人工智能药物设计-QSAR 数据清洗利器:MEHC-Curation 开源框架
SHAP 分析表明,模型捕捉到了强碱性残基隔离(sequestering)质子的现象,预测碎片强度分布随之偏移,并区分了电荷导向(charge-directed)和电荷远程(charge-remote)碎裂途径的细微差别。GRASP 的做法是,在提问时,给这个专家递上一张高度定制化的「小抄」,也就是「适应性软提示 (adaptive soft prompt)」。因此,GRASP 不仅能预测未知关系,还能审视和修正现有知识库,成为一个科学发现的引擎,帮助我们从海量数据中找到新的生物学联系。
2025-12-03 10:38:37
468
原创 在 GitHub 上生成和配置个人访问令牌(PAT),并将其用于 R 环境中的凭证管理和包安装。
通过生成 GitHub 的个人访问令牌(PAT)并配置到 R 环境中,你能够在 R 中安全地使用 GitHub 凭证进行包安装、推送和拉取操作。生成 GitHub PAT。使用gitcreds包将 PAT 配置到 R 中。使用remotes包进行 GitHub 包安装。如果按照这些步骤操作,应该能够避免遇到 401 错误并顺利安装所需的 GitHub 包。
2025-12-02 16:45:58
778
原创 AIDD-人工智能药物设计-Peptide2Mol:AI 直接生成模拟多肽的小分子,用于靶向蛋白质结合
这说明,要让模型理解气味,仅有通用的化学知识是不够的,还需要针对嗅觉进行专门训练。研究者还发现,通过「局部精修」策略(部分掩蔽的自回归步骤)优化生成结果后,这些分子在对接打分和结构合理性评估(如 PoseBusters 测试)上的表现得到提升,证明模型能够进行精细的结构优化。这三个模型通过一个「形状 - 框架匹配网络」 (Shape-Frame Matching Network) 紧密协作,确保从表面信息到骨架结构,再到氨基酸序列的每一步都相互对齐兼容,保证最终生成的蛋白质分子在几何与化学上高度自洽。
2025-11-27 09:13:23
362
原创 AIDD-人工智能药物设计-ChemOrch:用合成数据训练大模型的化学能力
但分值最高的分子,结构可能高度相似。只要输入稀有骨架,模型就能保持核心结构不变,为其「装饰」上各种合理的侧链,生成一批拥有该骨架的全新分子。这样,SCM 既保留了 GNN 捕捉到的局部互动信息,又维持了分子的整体结构,避免了关键特征被「磨平」。对于药物研发领域的化学家,解析未知化合物,特别是复杂天然产物的结构,是一项精细的挑战。同时,它在处理真实的实验核磁数据时也表现出良好的「零样本泛化」(zero-shot generalization)能力,即无需预先学习特定分子的实验数据,即可做出可靠预测。
2025-11-27 09:11:05
342
原创 AIDD-人工智能药物设计-SIGMADOCK:用片段扩散模型革新分子对接
理论上,只要在这张地图上找到「宝藏」的位置,再解码回具体的肽序列,就完成了分子设计。在经典的 BioSNAP DTI 测试中,当面对训练中未见过的蛋白质时,BioCG 的 AUC 指标达到 89.31%,比之前的最优方法高出 14.3%。结合 PCA 这类经典统计工具对 AI 生成的表征空间进行预处理,并利用基本的化学知识(如物理化学性质),可以用更少的实验数据高效解决问题。但这个方法要求路面是连续平滑的「山坡」,而由离散碱基组成的 mRNA 序列则像一级级的「台阶」,无法直接计算梯度。
2025-11-27 09:08:11
461
原创 AIDD-人工智能药物设计-AI 智能体 IMMUNIA:发掘免疫治疗新靶点
为精确模拟 DNA 双螺旋中 GC/AT 碱基对的质子转移,研究者在一个基础模型上,仅增加 2300 个 MP2 级别的计算数据点,就将关键能垒的精度提升到昂贵的 CCSD(T) 级别。论文强调,不存在「一招鲜」的模型。一篇预印本论文介绍了一种名为 IMMUNIA 的新方法,它组织多个不同的大语言模型协同工作,像一个专家委员会,专门寻找新的免疫治疗靶点。他们使用 AlphaFold3 这类能精准预测蛋白质结构的 AI,在蛋白质的关键位置引入盐桥和金属配位等化学键,增加了分子内部的连接点,提升了整体稳定性。
2025-11-24 10:32:17
53
原创 AIDD-人工智能药物设计-eptide2Mol:AI 直接生成模拟多肽的小分子,用于靶向蛋白质结合
这说明,要让模型理解气味,仅有通用的化学知识是不够的,还需要针对嗅觉进行专门训练。研究者还发现,通过「局部精修」策略(部分掩蔽的自回归步骤)优化生成结果后,这些分子在对接打分和结构合理性评估(如 PoseBusters 测试)上的表现得到提升,证明模型能够进行精细的结构优化。这三个模型通过一个「形状 - 框架匹配网络」 (Shape-Frame Matching Network) 紧密协作,确保从表面信息到骨架结构,再到氨基酸序列的每一步都相互对齐兼容,保证最终生成的蛋白质分子在几何与化学上高度自洽。
2025-11-24 10:30:43
220
原创 为什么 Jupyter 修改了 Python 文件后不生效?——你必须知道的 Restart / Reload 机制
改了 20 行代码运行依然是旧结果以为自己没保存以为路径不对以为 import 什么地方错了花 30 分钟 debug……从此世界清静了。问题原因解决方式修改模块后 Notebook 不生效Notebook 缓存了旧版本Restart kernel(最推荐)想不重启就更新模块手动 reload输出仍旧是中文Notebook 仍在运行旧版本模块查看路径 + Restart。
2025-11-24 10:27:57
916
原创 安装tensorflow出错
确保你的网络连接稳定。如果你的网络速度较慢或者不稳定,可能会导致文件下载超时。尝试使用一个更快或者更稳定的网络连接。你可以手动下载 TensorFlow 的。源可能会受限,可以切换到国内的镜像源来加速下载。**,通常发生在网络连接不稳定或者下载速度慢的情况下。如果以上方法不行,你也可以尝试重新安装所有依赖项,特别是在虚拟环境中安装。这将把超时时间设置为120秒,给下载更多时间。如果你在下载文件时遇到断网问题,使用。下载文件时发生的,导致连接超时。,通过更快速的国内镜像进行下载。下载时的超时时间,使用。
2025-11-18 12:58:52
240
原创 AIDD-人工智能药物设计-DeepVul:用 Transformer 预测药物反应
它在分子特性分布的 KL 散度(Kullback-Leibler divergence)上,比 DiGress 低近一半,比 JTVAE 低九成以上,表明其生成的分子特性更接近真实分子。专家评估发现,它生成的无环或脂肪族分子与真实分子的分布几乎没有区别,证明了模型探索不同化学结构空间的能力。例如,如果细胞系 A 的基因表达谱,与敲除基因 X 后的细胞系 B 相似,模型就会推断基因 X 可能是细胞系 A 的「阿喀琉斯之踵」。两者结合,让模型既能看到「树木」,也能看到「森林」,对药物分子的理解更加立体。
2025-11-10 13:23:29
642
原创 AIDD-人工智能药物设计-AI 生成双靶点分子,还保证能合成
最终,算法会提供一组位于「帕累托前沿」的分子,它们代表了不同目标间的最佳权衡(trade-off),供研发团队选择。因此,CombiMOTS 拼接出的每个分子,其合成路线从设计之初就基本明确,连接了计算设计与实验室合成,避免了「纸上谈兵」的困境。这证明,蛋白质能否结合细胞膜,主要取决于其表面形状是否匹配,就像钥匙的形状必须先对上锁孔,材质是次要的。这项工作针对计算药物化学的核心难题——溶剂化效应,结合了精确的物理模型(AMOEBA)和高效的采样算法(Lambda-ABF-OPES),提供了一个可靠的工具。
2025-11-10 13:22:37
666
原创 AIDD-人工智能药物设计-M-GLC: 用化学基元破解少样本预测难题
它将抗体 - 抗原复合物视为一个由氨基酸(节点)和相互作用(弹簧)组成的弹性网络模型(Elastic Network Models),再用一个卷积神经网络(Convolutional Neural Network, CNN)学习该网络的动态特性,理解复合物结合时的动态变化。化学家看到新分子时,会将其拆解成熟悉的片段(基元,motifs),并根据这些片段的已知性质来推断整个分子的性质。该工具开源,每个模块都封装在独立的 Conda 环境中,保证了研究结果的可复现性,为探索微生物肽库提供了新的可能。
2025-11-10 13:20:46
717
原创 TriDS:AI 原生分子对接,统一高效
这种目标导向的搜索方式,大幅提升了构象采样的效率。传统的分子对接(Molecular Docking)流程繁琐,需要分步进行:先用一个程序预测蛋白上的结合口袋,再用另一个程序尝试放入小分子的各种构象(构象采样),最后可能还要换个打分函数重新评估最佳构象。在这一任务上的显著进步,说明 MuMo 的融合策略抓住了关键,让模型对分子结构的理解更深刻、更鲁棒。如果缺少目标蛋白与配体的复合物结构,但拥有该蛋白与类似配体的结构,或同源蛋白的结构,Pearl 可以将这些信息作为模板,提高预测的准确性。
2025-11-10 13:19:48
659
原创 AI 赋能蛋白质设计:免费交互式教程 DL4Proteins
在 MIMIC III 和 IV 大型医疗数据集上的测试表明,SubRec 推荐的药物与医生处方高度一致,且引发潜在药物相互作用(drug-drug interaction)的风险更低,提升了用药安全性。此举减少了模型训练的计算量,并增强了推荐过程的可控性。它能在没有明确结构输入的情况下,准确圈定蛋白质上的多肽结合区域,这对设计新的多肽药物或抑制剂具有潜力。SubRec 为个性化用药推荐提供了新思路:将药物的化学本质与患者的临床数据结合,才能实现智能且负责任的推荐,推动精准医疗的发展。
2025-11-10 13:19:02
1084
原创 ProAffinity++:用图神经网络预测蛋白质结合亲和力
结果显示,其在 Davis 数据集上的一致性指数(CI,评估预测排序准确度的指标)首次超过 0.9,达到 0.9026,证明了其预测能力的提升。在实际测试中,无论是在常规的结合亲和力预测,还是在抗原 - 抗体识别、错义突变等挑战性场景下,ProAffinity++ 的表现都全面超越了现有的顶尖方法。结果证实,全局 - 局部特征提取和多尺度特征融合,都是模型取得优异性能的关键。它是一个经验丰富的「评审专家」,接收现有对接软件(如 rDock)生成的构象,然后用机器学习模型重新排序,筛选出最可信的结果。
2025-11-10 13:18:16
605
原创 AI 设计抗菌肽:WAE 模型脱颖而出
在处理与训练集序列差异巨大的新蛋白质时,PLMDA-PPI 的表现远超 D-SCRIPT 和 Topsy-Turvy 等依赖序列信息的方法。传统上,发现和优化这些肽链的过程耗时费力,而深度学习,特别是生成模型,正在加速这一进程。研究者还进行了一项微调 (fine-tuning) 实验,用人类的 PPI 数据训练模型后,发现其预测其他物种(如酵母、果蝇)PPI 的准确率也随之提高。然后,再让它「创作」全新的肽序列,以期找到比现有药物更好的候选分子。它能筛选可能相互作用的蛋白质靶点,并直接指出潜在的结合界面。
2025-11-10 13:17:14
960
原创 pymol ‘utf-8‘ codec can‘t decode byte Oxb7 in position 44: invalid start byte
摘要:使用iconv命令转换文件编码时遇到invalid option -- o错误,这是因为某些版本不支持-o选项。解决方案是改用标准重定向操作符>来保存转换后的文件。正确命令格式为iconv -f [原编码] -t utf-8 输入文件 > 输出文件。转换后需验证新文件是否能正确显示,再导入PyMOL使用。该问题源于特定iconv版本功能限制及文件编码与UTF-8标准不兼容。
2025-11-07 13:14:44
397
原创 AIDD- Artificial Intelligence Drug Design
摘要:人工智能药物设计(AIDD)Python基础入门 本文介绍了AIDD(人工智能药物设计)中Python编程的基础知识,包括环境配置、基本语法、数据类型、输入输出和条件语句。主要内容: 环境搭建:推荐使用Anaconda安装Python,配置虚拟环境并安装NumPy、Pandas等科学计算库。 基础语法:通过"Hello World"示例展示Python的print函数和代码结构。 变量与数据类型:涵盖整数、浮点数、字符串和布尔型变量在药物数据(如化合物名称、分子量)中的使用。 输入
2025-06-24 13:23:01
1017
原创 AIDD-人工智能药物设计-结构感知配体生成模型
T5ProtChem 为统一的生物医学语言模型奠定了基础,减少了对多个预训练模型的依赖,简化了流程,并实现了跨分子生物学和化学的更丰富的表征学习。化学计量预测是 CASP16 的一项新挑战,AlphaFold3 在排名靠前的模型中正确预测了 34% 的化学计量,在五个提交中正确预测了 54%,这表明仍有改进空间,尤其是在异聚体组装方面。此外,该方法的泛化能力强,超越了 mGPfusion 等仅限于热稳定性的预测,支持更广泛的蛋白质功能预测,并在六种基准蛋白质的酶活性和配体结合突变效应估计中展现出最佳性能。
2025-04-22 03:07:36
1227
原创 AI 驱动抗生素发现:从靶点到化合物测试
选择的靶点包括已验证的抗生素靶点 MurC、新型酶靶点 CdsA 和推定的二聚化界面靶点 CohE,它们与已知数据集的结构相似性各不相同,以便严格评估模型的泛化能力。此外,RetroGFN 生成的反应包含更多样化的分子骨架,尤其是在较大的 k 值下,这满足了合成规划中对结构多样性的关键需求。TamGen 探索了最广泛的化学空间,但也表现出较高的骨架冗余,经常在不同靶点上生成相同的分子,这表明其具有较强的先验性,但结构特异性较低。需要注意的是,这些结果特定于本研究中使用的 ML 方法和 AutoML 库。
2025-04-19 17:40:43
903
原创 AIDD-人工智能药物设计-融合多源知识,精准预测蛋白质功能
结果表明,基于全基因组表征学习(WGRL)的表征在几乎所有表型和 k 值上都表现出比标准 Pfam 结构域存在/缺失向量更高的预测性能,尤其在系统发育信号较低的表型(例如 pH 和盐度偏好)上表现出色,表明该模型捕获了超出系统发育相关性的机制。这些组件协同工作,简化了结核病抗生素的发现过程。DeepCryoRNA 利用一种特制的 U-Net 神经网络,能够预测 RNA 分子中的 18 种原子类型,从而提高了原子预测精度,并改进了从冷冻电镜数据构建完整 RNA 序列的过程,其中全局序列比对发挥了关键作用。
2025-04-13 17:31:32
1078
原创 AIDD-人工智能药物设计-基于多智能体的药物靶点相互作用预测
例如,它在基于脂质的网络中检测到与哮喘相关的钠通道,在基于离子的网络中检测到与白血病相关的锌指结构。从 QM9 训练的教师模型到实验数据集(如 ESOL(logS)和 FreeSolv(ΔGhyd))的跨领域迁移表明,KD 有助于弥合理论数据和经验数据之间的分布差距,SchNet 在溶解度预测上实现了约 65% 的 R² 增益。该方法使精简的学生模型(最高可缩小 2 倍)在量子数据集(QM9)和实验基准(ESOL、FreeSolv)上达到或超过复杂教师模型的性能,证明了其在特定领域和跨领域设置中的有效性。
2025-04-13 17:14:36
669
原创 AIDD-人工智能药物设计-大语言模型在医学领域的革命性应用
近年来,通用大语言模型(LLMs)如 PaLM、LLaMA、GPT 系列与 ChatGLM,在文本生成、摘要、问答等自然语言处理任务中取得了显著进展,并逐步拓展至医学领域。基于开源LLMs(如LLaMA),研究人员构建了多种医学专用模型,如 ChatDoctor、MedAlpaca、PMC-LLaMA、BenTsao 和 Clinical Camel,以支持临床诊疗和患者管理。例如,大多数模型集中于医学对话与问答场景,实际临床应用中的任务(如电子病历分析、出院小结生成、健康教育与照护计划)尚未被充分挖掘。
2025-04-12 17:16:26
1513
原创 AIDD-人工智能药物设计-提升分子预测反事实解释可靠性
同时,模型采用基于 k-mer 的 word2vec 表示法进行子序列嵌入,为模型提供了有效的上下文输入,进一步增强了从具有生物学意义的模式中学习的能力。因此,本研究引入投资组合优化中的度量标准,例如条件风险价值(CVaR)和冷启动性能,为评估蛋白质优化算法提供了新的维度,旨在不仅关注平均性能,更要最小化优化过程中的失败风险。研究表明,I-INF 为 RNA-蛋白质对接预测提供了可靠且一致的评分,并且是对现有评估方法(如 DockQv2)的有益补充,为界面质量评估带来了新的视角。
2025-04-12 17:15:08
1318
原创 AIDD-人工智能药物设计-AI 精准预测蛋白质变构位点
值得注意的是,研究者识别出 26 个 MAGs 编码了五种不同的植物生长促进性状,而这些 MAGs 大多数缺乏已培养的代表菌株,这为未来的分离培养工作指明了潜在目标。不仅如此,ICMA 的鲁棒性也得到了验证,例如在分子生成任务(Cap2Mol,即从文本描述生成分子结构)中,ICMA 同样取得了当前最佳(state-of-the-art)的结果。结果表明,与先前的方法(包括经过领域预训练的模型和使用传统上下文学习的 LLMs)相比,ICMA 在 BLEU 和 METEOR 等评价指标上均取得了更优异的成绩。
2025-04-12 17:13:42
1352
原创 AIDD-人工智能药物设计-面向AI驱动的生物医学研究的大规模综合知识图谱
虽然已有许多关于COVID-19药物再定位的研究,但据研究人员所知,尚无其他研究对如此大规模的候选药物进行过系统验证,这体现了iKraph在实时识别潜在治疗药物方面的独特优势。研究人员进一步为关系添加方向信息,训练模型预测因果方向,构建了可进行间接因果推理的图谱,并整合了40个公共数据库及高通量组学数据,极大提升了KG的覆盖度和质量。对前50个候选药物与前250个适应症进行评估,发现大多数情况下,PubMed抽取的结果具有更高的F1分数,显示文献中的信息密度与质量远超公共数据库,为药物再定位提供更强支撑。
2025-04-12 17:08:59
922
原创 GEO, TCGA 等将被禁用?!这40个公开数据库可能要小心使用了
你认为研究者上传到 GEO 数据库上的数据会被禁用吗?不会,不是所有数据都是老美的。没关系,反正有一些平替数据库。会,毕竟占用存储资源。
2025-04-09 00:15:38
586
原创 AI-人工智能-基于LC-MS/MS分子网络深度分析的天然产物成分解析的新策略
进一步比较显示,在不同的毛细管和锥孔电压下,ISF节点与正常节点的数量变化不大,但随着去溶剂化温度降低,ISF节点数量显著减少。例如,节点#417附近的节点#399、#381和#363的保留时间与节点#417相同,并且它们的特征离子在节点#417的一级谱图中可见,表明这些节点是节点#417的ISF节点。分子网络深度分析是一种根据不同冗余节点的特点,对分子网络中的冗余节点进行快速过滤和筛选的方法,从而产生只包含已知节点和未知节点的干净分子网络,更容易对未知节点进行表征,大大提高分子网络分析的效率和准确性。
2025-04-08 19:15:56
1282
原创 AI-人工智能-多模态药物识别AI新算法GSFM,为精准药物表征装上“智慧眼”
受启发于中药多靶点网络调控的特点,海军军医大学张卫东教授课题组联合中国科学院分子细胞科学卓越创新中心陈洛南教授课题组构建了以功能模块(Function Module,FM)为基本单元的多模态新型药物筛选算法,并探究药物的治疗效能与其对疾病逆转能力之间的系统性关联,为数据驱动的药物发现带来新见解。本研究不仅提供了药物研发领域的多模态药物筛选框架,更为基于表达谱驱动的新药发现提供了坚实的科学基础,而且该方法以功能模块为出发点,符合中药多靶点调控的特点,对于推动我国在中药创新药物研究领域的进步具有重要意义。
2025-04-08 19:14:51
491
原创 AIDD-人工智能药物设计-网络药理学-多组学与网络药理学分析揭示龟龄集治疗少精症的机制
该网络中的8种DMs在OAT组和GLJ组中相反表达,其中7种由OAT增加的代谢物在GLJ处理后被下调,尤其是花生四烯酸和鞘氨醇(图4D)。因此,对血清进行脂质组学分析,鉴定出159种脂质DMs(图3C),GLJ调节的54种DMs的包括33%的甘油磷脂,20%的甘油脂,17%的类固醇,6%的鞘脂等(图3F)。然后将GLJ-H和OAT组的DEGs进行功能富集分析,OAT vs Sham组和GLJ-H vs OAT组富集的生物过程(BP)和分子功能(MF),包括生物体发育和免疫过程(图5C)。
2025-04-08 19:12:45
1007
原创 AIDD-人工智能药物设计-TCMP-12个公开的中药数据库
数据库是中药网络药理学研究不可或缺的数据来源之一。目前已经建立了若干中药数据库,提供有关中药的各方面信息,包括疾病、方剂、草药或天然产物、生物活性成分和靶点。这些数据库成为中医药与现代生物医学之间的桥梁,在中药药理学研究中发挥了重要作用。这里列出12个公开的中药数据库。
2025-04-08 19:10:34
1300
原创 Win11重新设计开始菜单 变成iOS样式
下图:默认情况下新版 Windows 11 开始菜单样式,可以看到分别为已固定、推荐的项目和全部,其中推荐的项目包含微软根据用户使用频率、新添加的应用进行推荐,每行显示 3 个应用程序,第二行则显示最近的 3 个文件。,用户不能对网格进行重命名,但蓝点网估计后面应该是会允许用户对网格进行重命名的,这样用户 DIY 会更方便,但 iOS 的应用库同样不允许对网格进行分类,每次新安装的应用由苹果根据应用程序性质自动分类。好消息是我们可以通过切换视图改成为网格命名选项,这样默认变成列表显示且一行显示多个(
2025-04-08 19:09:12
667
原创 (AI+医疗)2025最应该学习是--医学AI大模型LLM应用与开发
AI正在重塑医疗行业。从智能问诊到辅助诊断,再到药物研发和病例分析,大型语言模型(LLM)如ChatGPT、DeepSeek等,以其强大的自然语言处理能力和知识推理能力,成为医生和研究人员的“超级大脑”。课程中将使用ChatGPT、DeepSeek、LangChain、Ollama等行业领先的AI工具,确保您始终站在技术的最前沿。这门“医学AI大模型应用与开发课程”专为医学专业人士、研究人员和AI开发者设计,内容全面、实用、前沿。:掌握Ollama本地部署技术,构建高效的知识推理系统,助力临床决策。
2025-04-08 19:06:00
608
原创 Nature破译SCLC的“电密码”:神经活动如何驱动癌症恶化
****,**通过电生理记录、代谢分析、动物模型和单细胞测序等多维度技术,系统解析了SCLC中神经内分泌(NE)细胞与非NE细胞的电活动特性及其代谢协作机制。首次证实小细胞肺癌(SCLC)中的神经内分泌(NE)细胞具有神经元样电活动(动作电位),其通过激活钙信号通路(如CREB/FOS)直接促进肿瘤转移和耐药性。非NE细胞通过分泌乳酸和丙酮酸支持NE细胞的能量需求,类似“星形胶质细胞-神经元乳酸穿梭”机制,揭示了亚群间代谢共生的关键作用。图4 来自非NE细胞的代谢物支持维持NE细胞对ATP的需求。
2025-04-08 13:53:30
816
原创 这个科研方向已经不适合临床医生
预后模型的缺乏限制了对患者预后的准确预测和靶向治疗的选择。该图进一步证实了PCDI作为预后指标的有效性:通过在多个独立数据集中验证PCDI与患者生存时间的相关性, 强调了PCDI在不同患者群体中的一致性:无论是在训练集还是验证集中,PCDI评分都显示出与生存时间的显著相关性,表明PCDI可能适用于不同患者群体的预后评估,从而支持了PCDI可以作为LUAD患者预后的可靠指标。图8b到图8 l的箱线图,比较了高PCDI组和低PCDI组之间的IC50(半抑制浓度)值,并显示了IC50和PCDI值之间的相关性。
2025-04-08 13:52:18
779
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅