自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(352)
  • 资源 (1)
  • 收藏
  • 关注

原创 AIDD-人工智能药物设计-人工智能驱动的基因组变异算法设计与应用

在过去的十年里,基因组测序已经成为基因组学、遗传学以及医学应用领域中不可或缺的重要手段,并催生了众多关键性的发现与深刻的见解。与GATK、DeepVariant结合BWA和Giraffe的鉴定结果相比,DRAGEN在合并的SNVs和indels上错误率大幅降低,与GATK + BWA相比平均错误减少82.88%,与DeepVariant + BWA相比平均错误减少60.07%,与Giraffe + DeepVariant相比平均错误减少44.33%,这证实了DRAGEN在使用泛基因组参考时的优越性能。

2025-01-16 19:23:23 890

原创 AIDD-人工智能药物设计-PLIP: 如何分析蛋白质和配体相互作用

本文介绍了蛋白质-配体相互作用指纹(PLIF)方法,该方法结合了蛋白质-配体相互作用分析软件(PLIP)和化学信息学工具包 RDKit,用于分析蛋白质-配体相互作用。首先,利用 PLIP 软件分析了 6 个 PD-L1 共晶体结构,获得了配体与蛋白质残基之间的相互作用信息。然后,根据 OPIG 博客介绍的方法,利用 RDKit 将 PLIP 的分析结果转换为 PLIF。为了便于比较不同共晶体结构之间的相互作用模式,将 PLIF 表示为位向量,并使用热图可视化。

2025-01-16 19:22:16 329

原创 AIDD-人工智能药物设计-利用生成式 AI 进行先导化合物结构优化

通过忽略原子和键的类型,可以获得更抽象的环状骨架 (CSK)。基于自身开发和应用结构导向先导化合物优化模型 Delete 的经验,作者提出了一个在实际药物研发中有效利用基于生成式 AI 的先导化合物优化模型的实用方案(图 9),包括获取初始蛋白 - 配体结构、选择目标指标、利用模型集合进行分子设计以及分子过滤和选择等步骤。最后,本文从优化算法的分类角度对目标导向和结构导向方法进行了独特的分类,并提出了一个参考方案,以帮助化学家将生成式 AI 方法融入结构修改任务,从而使实验人员能够快速适应最新的技术。

2025-01-16 19:21:06 1635

原创 AIDD-人工智能药物设计-基准数据集的泛化评估不真实?哈佛医学院提出SPECTRA

相似模式也在SP=0.95和SP=1.0的拆分中观察到。针对这一问题,作者提出了SPECTRA框架:如图1b, d所示,SPECTRA通过生成跨拆分重叠度(即训练集与测试集的相似性)逐步降低的一系列拆分,并绘制模型性能的谱曲线(SPC),以此观察模型在不同重叠度下的表现,并通过曲线下面积(AUSPC)量化总体泛化能力。深度学习通过预测序列与表型之间的生物学关系来模拟表型,但由于(1)仅有少量可用的分子测序数据,(2)序列会不断进化并出现数据集中未包含的新突变,导致分布移位,从而降低模型在新数据上的性能。

2025-01-16 14:41:04 594

原创 AIDD-人工智能药物设计-人工智能/机器学习在药物发现中的实际应用与实践经验

然而,由于生物系统的复杂性、高质量训练数据的有限性,以及化学描述符对化学相互作用的表征能力不足,实验数据的准确预测仍然是一个挑战。药物发现过程中的决策偏见是一个广为人知的问题,这些偏见可能阻碍进步,并妨碍AI/ML技术的整合,因为它们隐性地挑战了传统的工作方式。研究人员发现,生成工具的应用并非“简单按键式”过程,其结果的后处理至关重要,以提高生成化合物的可靠性和实用性。在竞争激烈的市场中,保持对AI/ML技术进步的敏锐洞察至关重要,因为潜在合作伙伴希望通过整合这些工具,在项目中生成和利用高质量的实验数据。

2025-01-16 14:39:46 733

原创 AIDD-人工智能药物设计-变扩散模型DiffSBDD

图2a显示,DiffSBDD和Pocket2Mol的Vina评分都集中在参考值附近,但扩散模型的分布范围更广,这表明其生成的样本中包含更多得分较低的分子,同时也包含潜在结合力可能强于天然配体的配体。为了提高计算效率,作者为配体和结合口袋节点之间的分子间边,以及同一分子中两节点之间的分子内边,定义了可独立调节的距离阈值(图1b)。而在作者提出的方法中,仅需定义一个简单的二进制掩码,就足以使扩散模型推广到任何修复任务,同时使用的是在所有可用蛋白质-配体原始数据上训练的神经网络。

2025-01-16 14:37:44 932

原创 AIDD-人工智能药物设计-基于对接的机器学习模型预测激酶抑制剂亲和力

图 2. Vina 和 RFScoreVS 评分函数与 Papyrus pChEMBL 数据的相关性 | 预测的亲和力值与文献值显示为对数六边形图,基于所有 VinaGPU 构象的 -Vina 得分 (A)、所有 VinaGPU 构象的 RFScoreVS (B)、所有 DiffDock 构象的 RFScoreVS ©、每种激酶计算并按激酶组汇总的 Vina 得分的 R2 (D)、VinaGPU 构象的 RFScoreVS (E) 和 DiffDock 构象的 RFScoreVS (F)。

2025-01-13 13:04:51 1255

原创 AIDD-人工智能药物设计-快速生成晶体结构,雷丁大学采用GPT架构生成CIF文件

相比之下,CrystaLLM的模型规模较小(2亿参数),更易部署和微调,且具备更高的灵活性和成本效益。CrystaLLM能生成训练中未见过的多种无机化合物的合理晶体结构,展示了大型语言模型在晶体化学建模中的巨大潜力,有望加速材料科学的发现与创新。如图6所示,研究人员使用CrystaLLM生成了1000个无条件的晶体结构,其中900个有效,891个独特,102个为训练集中未见的新结构。具体来说,表4显示,在挑战集中20个难题中,使用MCTS的有效性率在95%的情况下有所提升,且85%的生成结构能量更低。

2025-01-13 00:28:16 909

原创 AIDD - 人工智能药物设计 -深度学习赋能脂质纳米颗粒设计,实现高效肺部基因递送

今天为大家介绍的是来自美国麻省理工和爱荷华大学卡弗医学院团队的一篇论文。可离子化脂质(ionizable lipids)是脂质纳米颗粒(lipid nanoparticles)的关键组成部分,而脂质纳米颗粒是当前最先进的非病毒信使RNA递送技术。为超越当前依赖实验筛选和/或理性设计的可离子化脂质鉴定方法,作者引入了一种基于神经网络的脂质优化方法,这是一种用于可离子化脂质设计的深度学习策略。作者创建了一个包含超过9,000条脂质纳米颗粒活性测量数据的数据集,并利用这些数据训练了一个定向消息传递神经网络,以预测

2025-01-12 23:25:10 876

原创 AIDD-人工智能药物设计-用于科学药物发现的分子视频衍生基础模型

在 e 中,分子框架对分别表示结构缺失的框架和结构出现的框架。在虚拟筛选与分子对接任务中,VideoMol 成功筛选出具有较高结合亲和力的抑制剂,在靶向 BACE1、COX-1 和 COX-2 等靶点的药物的虚拟筛选中,其性能远超传统的分子对接方法,充分证明了 VideoMol 在分子三维动态信息捕获方面的优势。与传统的分子表征(如分子指纹、分子图结构和静态图像)不同,VideoMol 将分子的三维构象动态变化表示为视频,通过旋转分子三维结构生成 60 帧视频,捕获不同视角下的结构信息。

2025-01-10 11:13:55 1178

原创 AIDD-人工智能药物设计-整合增强癌症依赖图谱,MOSA揭示癌症耐药机制

今天为大家介绍的是来自澳大利亚悉尼大学、葡萄牙里斯本INESC-ID研究所、英国维康桑格研究所团队的一篇论文。整合不同类型的生物学数据对于全面理解癌症生物学至关重要,但由于数据的异质性、复杂性和稀疏性,这一工作仍然充满挑战。为解决这个问题,作者的研究引入了一个无监督深度学习模型MOSA(Multi-Omic Synthetic Augmentation,多组学合成增强),该模型专门设计用于整合和增强癌症依赖图谱(Dependency Map,DepMap)。通过利用正交的多组学信息,该模型成功生成了分子和表

2025-01-10 00:24:43 641

原创 AIDD-人工智能药物设计-3DSMILES-GPT:基于词元化语言模型的3D分子生成

王極可博士浙江大学本文第一作者,浙江大学药学院博士,主要研究方向为人工智能药物设计,包括小分子、多肽和抗体的设计。主导和参与开发了 MCMG、ClickGen 和 DrugFlow 等分子生成、成药性预测方法和软件 10 余件,主持国家自然科学基金青年科学基金项目等科研项目 4 项。在等国际知名期刊发表 SCI 论文 40 余篇。罗浩硕士研究生浙江大学本文共同第一作者,浙江大学研究生,主要从事基于大规模语言模型与检索增强生成技术的智能分子设计研究,包括分子生成与优化等方向。秦睿博士研究生浙江大学。

2025-01-10 00:08:54 1001

原创 AIDD-人工智能药物设计-人工智能破解酶稳定性定向进化中的多个突变位点高效重组问题

在肌酸酶的进化实例中,仅经过两轮设计,获得了50个具有卓越热稳定性的组合突变体,设计成功率达100%。结果表明,使用高质量的实验数据微调模型的参数,可以帮助模型准确捕获数据集中的已存在的上位效应,并用于后续高阶组合突变体的适应度预测。动态相关矩阵分析的结果表明,影响稳定性的突变不仅影响其局部环境的动力学,在某些情况下,还影响远端结构区域的动力学(图3)。其中,最佳突变体13M4包含13个突变位点,与野生型相比,它的活性基本保持不变,在Tm上提高了10.19°C,在58°C下的半衰期增加了约655倍。

2025-01-10 00:07:21 906

原创 AIDD-人工智能药物设计-AlphaFold系列:年终回顾,AlphaFold迄今为止的实际应用案例

从抗疫前线到药物开发,从罕见病研究到工业酶催化改造,AlphaFold 正在以多元方式渗透到生物医学和产业应用的各个环节。

2025-01-10 00:06:08 808

原创 AIDD-人工智能药物设计-AlphaFold系列:全面回顾AF1-3的关键研究成果及其对科学界的影响

AlphaFold1 将深度学习引入蛋白质结构预测领域,AlphaFold2 在 CASP14 中惊艳全场,并以对人类蛋白质组几乎“全覆盖”的姿态成为结构生物学的新里程碑。其带来的开源与大规模应用浪潮影响深远。AlphaFold3 则再一次突破瓶颈,在蛋白质-配体相互作用预测方面展现出更高精度与更大潜力,进一步加速了药物设计与科研创新的步伐。展望未来,随着更多算法、数据与学科的融合,蛋白质结构预测将继续走向蛋白质动力学模拟、多蛋白相互作用网络解析等更为宏大的研究方向。

2025-01-10 00:05:21 1182

原创 AIDD-人工智能药物设计-AlphaFold系列:一文读懂AF1-3核心技术

Deep Mind新推出的这个超大数据库包括了人类基因组表达的全部蛋白质的三维结构,以及出现在20种其他生物体(包括小鼠、果蝇和大肠杆菌)内的蛋白质的三维结构。无论是加速药物研发,还是帮助我们理解生命的基本原理,它都正在以一种前所未有的方式,塑造着我们的未来,让我们一起期待未来的新进展。了解蛋白质的三维结构,有助于揭示它在细胞内的功能,并为开发针对特定疾病的药物提供关键靶点。尽管AlphaFold 3已扩展至DNA和RNA,但一些复杂的**非标准分子(如糖类、脂****类)**的结构预测仍是未知领域。

2025-01-10 00:04:25 580

原创 AIDD-人工智能药物设计-人工智能驱动的罕见病药物发现

*罕见病(Rare Diseases,RDs)**是全球公共卫生领域的重大挑战,其特点是疾病种类繁多、症状复杂且诊断困难。这篇文章聚焦人工智能(AI)在罕见病药物发现中的应用,探讨如何借助机器学习(ML)和深度学习(DL)克服传统药物开发面临的障碍,加速治疗进程。• AI模型准确预测了多个候选药物的潜在毒性,显著减少了实验验证的时间和成本。• 精准肿瘤学中,AI模型预测单细胞水平的药物耐药性,设计靶向治疗。• 在ALS研究中,AI发现的新靶点在实验中表现出较高的治疗潜力。

2025-01-10 00:03:21 868

原创 AIDD-人工智能药物设计-通过组合生物合成产生新的类似物的抗真菌费尔南型三萜多聚类素的生物合成表征

为了拓展聚多酚类类似物的种类,研究团队在真菌中鉴定了两种新的菲南型环化酶,并将这两种环化酶分别与A.oryzae NSAR1中的PoIB/CE组合,成功获得了5种新的聚多酚类类似物。鉴于费南德型三萜的药用价值,研究团队利用基因组数据、合成生物学工具和异源寄主的发展,采用了基于个体生物合成途径功能表征的组合生物合成策略,以扩大天然产物的结构多样性。在真菌中,费南德型三萜主要分为两类,其中I组具有完整的五环骨架和高氧a环,且展现出有效的抗真菌活性,但目前已知的I族费尔南型三萜仅有两种。1-13抗真菌活性评价。

2025-01-09 09:30:07 966

原创 AIDD-人工智能药物设计-基于Transformer的生成模型探索蛋白质-蛋白质复合物的构象系综

今天为大家介绍的是由延世大学,湖南大学,西南医科大学联合发表在中科院一区top,计算化学领域顶刊****Journal of Chemical Theory and Computation的论文,“Exploring the conformational ensembles of protein-protein complex with transformer-based generative model”。蛋白质-蛋白质相互作用(PPIs)是许多蛋白质功能的基础,了解蛋白质-蛋白质相互作用的接触和构象变化

2025-01-09 09:08:22 910

原创 AIDD-人工智能药物设计-基于Transformer的分子生成模型用于抗病毒药物设计

由于简化分子输入线入系统(SMILES)面向分子的原子级表示,并且在人类可读性和可编辑性方面不友好,然而,IUPAC是最接近自然语言的,并且在人类可读性和分子编辑方面非常友好,我们可以操作IUPAC来生成相应的新分子并产生适合编程的SMILES形式的分子。此外,抗病毒药物设计,特别是基于类似物的药物设计,更适合直接从IUPAC的功能团水平进行编辑和设计,而不是从SMILES的原子级水平进行设计,因为设计类似物仅涉及改变R基团,更接近化学家基于知识的分子设计。在这项研究中,我们首先对序列进行了标记化处理。

2025-01-09 09:05:00 1249

原创 AIDD-人工智能药物设计-可扩展!更快!更便宜!大规模基因组数据存储新结构

如图1c所示,本文介绍了一种名为基因型表示图的新型层次化图结构,能够无损压缩分相的全基因组数据,并支持高效的图遍历算法。GRG在计算等位基因频率方面效率最高,平均速度比使用BED文件的PLINK快5倍,比使用vcf.gz文件的PLINK快220倍,比XSI快2.6倍,这是因为GRG能够在整个图中重用“记忆化”的值。在图3b中,GRG与XSI和Savvy在UKB数据集的染色体13和22上的文件大小比较显示,GRG文件约为XSI和Savvy的一半大小,同时在构建速度和成本上表现更优(图3c, d)。

2025-01-09 09:01:21 691

原创 AIDD - 人工智能药物设计 - 基于 GROMACS 和 Python 的分子动力学模拟

将以下内容保存为。

2025-01-04 02:22:33 325

原创 AIDD-人工智能药物设计-使用Diffusion设计出高亲和力、高特异性的拮抗剂与激动剂

今天为大家介绍的是来自david baker团队的一篇论文。尽管在设计蛋白质结合蛋白方面取得了进展,但设计蛋白与靶标之间的形状匹配程度仍低于许多天然蛋白质复合物。对于肿瘤坏死因子受体1(tumor necrosis factor receptor 1,TNFR1)以及其他具有相对平坦和极性表面的蛋白质靶标,之前的设计尝试都未能成功。作者假设,从随机噪声开始的自由扩散过程可以为这些具有挑战性的靶标生成形状匹配的结合蛋白,并在TNFR1上验证了这一方法。通过这种方法,作者获得了具有皮摩尔级亲和力的设计蛋白,并且

2025-01-01 09:41:19 971

原创 AIDD -人工智能药物设计- DrugChat:多模态大语言模型实现药物机制与属性的全方位预测

此外,DrugChat支持与用户的多轮对话,促进了对同一分子的交互式深入探索。例如,在适应症预测任务中,DrugChat的预测有42.9%被评为正确,19%为部分正确,38.1%为不正确,而GPT-4的预测只有14.3%正确,9.5%部分正确,76.2%不正确。具体而言,在适应症、药效学、作用机制和概述方面,DrugChat分别为52.4%、41.2%、50%和47.2%的分子生成了更好的预测,而GPT-4仅在14.3%、35.3%、30%和25%的情况下优于DrugChat,其余比较结果为持平。

2024-12-31 23:30:59 1198

原创 AIDD -人工智能药物设计-RDKit | 基于不同描述符和指纹的机器学习模型预测logP

不幸的是,当前缺乏可用于训练更好的预测工具的公开可用的实验log P数据集。将描述符与scikit-learn的默认随机森林配合使用,可以使获得比RDKit log P预测值更高的R2和MSE性能。已经看到了简单分子描述符的性能,想评估一些最流行的分子指纹的性能。这里将计算分子的不同物理描述符以及结构指纹,并使用三种不同的回归模型(神经网络,随机森林和支持向量机)对它们的性能进行基准测试。RDKit计算的log P预测具有较高的均方误差,并且该数据集的确定系数较弱。训练简单的描述符模型。

2024-12-27 01:04:31 442

原创 AIDD -人工智能药物设计 - RDKit | 通过评估合成难度筛选化合物

在这种情况下,如果优先考虑其他指标(例如活性)并在最后考虑“合成的难易程度”,则倾向于选择具有相似化学型和骨架的化合物。换句话说,用一种简单的方法来评估大量化合物的“合成容易性”很重要。该方法基于分子的“复杂性”,但是为了结合试剂和反应的作用,可以立即构建复杂的结构,因此使用了“经常出现的子结构易于合成”的假设。具体地,基于从PubChem获得的100万种化合物的ECFP4指纹的频率进行加权。经验丰富的合成化学家可以通过查看化合物的结构来确定合成的难度,但是它不能解决数百万种化合物的筛选问题。

2024-12-27 01:01:41 336

原创 AIDD - 人工智能药物设计 - RDKit | 基于Lipinski规则过滤化合物库

辉瑞公司资深药物化学家克里斯多夫·里宾斯基在1997年提出的筛选类药分子的五条基本法则,符合里宾斯基五规则的化合物会有更好的药代动力学性质,在生物体内代谢过程中会有更高的生物利用度,因而也更有可能成为口服药物。在药物研发领域,里宾斯基五规则被用于对化合物库的初筛,以期摒除那些不适合成为药物的分子,缩小筛选的范围并降低药物研发成本。在长期的实践过程中,药物化学家们对里宾斯基五规则作出简化,形成“四规则”和“三规则”,但是四规则和三规则有时仍然被称作“五规则”,这里的五指的是各条规则的判别值均为5或500。

2024-12-27 00:59:11 1348

原创 AIDD - 人工智能药物设计 - RDKit | 化合物库的相似性分析

实例中使用SMILES文件,该分析可以以相同的方式从分子的SDF或其他格式文件中加载数据,只需确保使用适当的方法将分子加载到RDKit中。保留1000分子,可将SMILES转换为RDKit分子对象。该库包含超过8 000 000个SMILES。展示一种小分子数据库的相似性分析策略。

2024-12-27 00:57:57 151

原创 AIDD - 人工智能药物设计 - RDKit:化合物相似性搜索

局部相似性专注于分子拓扑结构上是否具有特定的官能团以及是否具有某些特定的对于分子识别至关重要的原子排布。全局分子相似性总是与小分子的生物响应行为联系在一起,不断与生物活性紧密相关的分子特征做任何假设;基于分子相似性的虚拟筛选核心是“相似性假设”,这个假设首先由 Johnson 和 Maggiora提出,即结构类似的化合物具有类似的物化性质和生物活性,相似性方法在医药领域极具价值。化合物相似性在化学信息学和药物发现中具有悠久的历史,许多计算方法采用相似度测定来鉴定研究的新化合物。

2024-12-27 00:56:23 341

原创 2024最新版本,完全解suo限制

C.A.D迷.你画图软件还是挺好用的,最少它家的看图软件对于我这种不搞工程不画图的人来说非常好用。今天带来的版本是完全解suo功能,安装以后所有的功能都完全免费,不再有提示是会圆了,可直接使用。文末获取的软件包括两个压缩包,一个是安装文件,一个是bu.丁文件,大家首先安装“官方安装包”。这种软件大家早用早享受,且用且珍惜,实在不行,可以去软件目录里找替代品!然后到桌面找到软件图标,“右键”——“打开文件所在的位置”。再然后把补.丁复制,复制后粘贴到软件的安装目录下。

2024-12-27 00:50:57 261 1

原创 AIDD -人工智能药物设计 - UCBShift 2.0 能够预测蛋白质侧链的化学位移

值得注意的是,作者使用了UCBShift预测的"测试模式"标准,该标准排除了与查询序列相似度超过99%的序列,而SHIFTX2的测试数据可能包括100%相似度的情况。因此,当有任何类型的同源性数据和已分配的实验化学位移时,与单独使用UCBShift-X组件相比,侧链碳原子的平均化学位移MAE可改善0.5 ppm,侧链氢原子可改善0.2 ppm。UCBShift-Y还利用结构相似性,它会过滤掉那些具有高序列相似性但结构显著不同的蛋白质的不匹配化学位移,或者在序列比对较差但结构相似性显著的情况下的化学位移。

2024-12-27 00:48:34 693

原创 AIDD - 人工智能药物设计 - 用于早期识别细胞毒性化合物的ML工具

Cyto-Safe 是一款基于机器学习的毒性预测工具,结合了高准确性、可解释性和易用性,能够显著加速药物发现中的细胞毒性评估。图3: 对多柔比星(Doxorubicin)在3T3模型(A)和HEK-293模型(B)上的预测结果,对布洛芬(Ibuprofen)在3T3模型(C)和HEK-293模型(D)上的预测结果。尤其是基于机器学习的定量结构-活性关系(QSAR)模型,通过分析大量已知数据,识别分子结构与毒性之间的关系,可以快速、准确地预测新的化合物毒性。,在保持数据多样性的前提下,平衡正负样本的比例。

2024-12-25 15:59:44 713

原创 AIDD -人工智能药物设计 - 4.0版本

1. Convolutional Neural Network (CNN) ModelsCNN Binary Example DAVISCNN Binary SARS CoV 3CLCNN Transformer DavisCNN Transformer KIBA-gpuCNN Transformer KibaMorgan CNN Morgan AAC Daylight AAC DAVISMorgan CNN Morgan AAC Daylight AAC KIBA2. Deep Lea

2024-12-25 01:52:22 271

原创 AIDD -人工智能药物设计 - E3 ligase KLHDC2配体及结合模式

总的来说该靶点作为E3 ligase家族中用作开发PROTAC较新一点的成员,其druggability或者说ligandability似乎不算特别挑战,就配体开发而言,下一步如何替换这个羧基可能是个有意思的问题,众所周知羧基的引入可能破坏透膜性,目前文献 (无论是Arvinas还是近期这篇文献) 做PROTAC验证主要采用的羧酸酯化 (前药) 的方式。近日又看到一类配体,是基于筛选得到的hit,筛选的库不算大,只有8892个分子,用的TSA作primary assay。下图是是这四个结构叠合一起。

2024-12-25 00:45:29 274

原创 AIDD - 人工智能药物设计 - AI智能体赋能生物学发现

部署智能体系统,特别是表1中提到的第2和第3级智能体,存在生成不可靠预测的障碍,包括虚构信息、推理错误、系统性偏见,以及在连接工具和实验平台时的规划失败。因此,当任务偏离训练时的假设,模型性能会下降。同时,为确保AI在实际应用中的可靠性和安全性,需要通过多场景评估测试其行为,并依据伦理规范和安全指南进行约束,特别是在技术初期,通过限制功能范围降低风险。AI智能体是在ML模型基础上的进化,结合Transformer架构和生成式预训练等技术,具备推理和交互能力,能评估动态环境,更适合建模复杂的生物系统。

2024-12-25 00:42:15 832

原创 AIDD - 人工智能药物设计 -PocketGen高效生成蛋白口袋

然而,基于人工智能设计此类蛋白面临诸多挑战,包括蛋白–配体相互作用的复杂性、配体分子和氨基酸侧链的灵活性,以及序列与结构之间的依赖性。近年来,基于深度学习的方法显著推动了蛋白结合位点设计的发展。在APX和7V7的设计中,PocketGen保留了疏水接触、氢键和π-π堆叠等关键模式,并引入新相互作用,如LYS192的π-阳离子相互作用和ASN35的氢键。图4d–f显示,PocketGen生成的蛋白口袋中,亲和力高于参考口袋的比例分别为11%、40%和45%,远超RFAA的0%、10%和18%。

2024-12-25 00:38:23 836

原创 AIDD -人工智能药物设计 - 蛋白-蛋白(PPI)界面感知的分子生成框架用于PPI调节剂设计

此外,在少样本分子生成实验中,GENiPPI成功生成了靶向Hsp90-Cdc37相互作用的化合物,其化学特性与已知的干扰剂相似,即使在有限的标注数据条件下依然表现出色。药物设计中的分子生成模型大致分为三类:基于配体的分子生成模型(LBMG)、基于结构的分子生成模型(SBMG,聚焦于结合口袋或结合位点)和基于片段的分子生成模型(FBMG)。此外,与训练数据集相比,生成化合物的类药性特征发生了显著的分布变化,表明GENiPPI框架不仅仅是复制已知分子的分布,而是生成了在保持类药性的同时探索新化学空间的化合物。

2024-12-25 00:36:51 656

原创 AIDD -人工智能药物设计 -蛋白质柔性的预测

研究团队提出的方案包含四个主要部分:化学位移赋值的参考校正、序列特异性随机线圈化学位移的计算、RCI(加权次级化学位移的倒数平均值)的计算,以及预测NMR(核磁共振)和MD(分子动力学)系统的无模型阶参量和均方根涨落(rmsf)。尽管将RCI值转换为MD RMSF、NMR RMSF或S’值并非必要,因为这种转换不会改变RCI所包含的信息内容和灵活性预测的质量,但RCI衍生的传统运动幅度测量可能更易于与蛋白质运动模型相关联,并方便与标准方法获得的参数进行对比。

2024-12-25 00:31:35 637

原创 AIDD - 虚拟细胞:计算细胞生物学的软件环境

虚拟单元系统是一个综合性的计算框架,旨在支持细胞生物学的建模与仿真。当前版本的虚拟单元系统能处理广泛的建模问题,包括任意几何形状中的反应扩散过程,但对于涉及几何形状变化的复杂问题,如细胞迁移和有丝分裂,需进一步显著增强系统能力。荧光指示染料虽已使IP₃生成后的钙释放得到详细研究,但缺乏直接指示IP₃本身的染料,这成为理解IP₃在细胞信号转导中的时空特征的一大障碍。当发现基于文献数据的模型无法预测观察到的钙动力学时,进行了实验重复,最终发现胞体中储存的钙密度需约为神经突中钙密度的两倍,才能重现观察到的钙波。

2024-12-25 00:29:42 902

原创 AIDD - 人工智能药物设计-使用 RDkit 绘制分子结构

创建一个 Pandas DataFrame,粘贴每个分子的结构,并将其输出为 Excel 文件。(例如,我们将使用 RDkit 分子描述符的 DataFrame)

2024-12-25 00:26:14 930

2024-中药网络药理学-教程(全网最牛逼)

具体的内容在这里

2024-04-17

html5动画-画玫瑰花-浪漫

应用了html5+css3的动画知识,写出来一捧玫瑰花,适合情人节,七夕,送朋友,送爱人。同行可以拿来,相互学习。

2018-09-04

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除