西湖大学团队登上Nature Materials,AI从零设计抗菌肽,对抗耐药菌还有清除生物膜超能力!
在抗生素滥用引发耐药危机的当下,我们亟需更安全、更智能的抗菌策略。而就在最近,一项由西湖大学黄晶教授与王怀民教授团队联合主导的研究登上《Nature Materials》,提出了一种以深度学习模型引导、全新设计的抗菌自组装肽(SAFP)。
该团队不仅开发了强效、广谱、低毒、无耐药风险的新型抗菌肽,还构建了一个可迁移的AI模型“TransSAFP”,为下一代抗菌药物设计打开了新的大门!
AI+生物:从头设计功能性自组装肽
过去,自组装肽(SAFP)因其结构多变、合成简单、生物相容性好,被广泛用于组织工程、药物递送等领域。而赋予它们“抗菌功能”却一直是难点,特别是当我们使用非天然氨基酸或添加N端修饰基团时,传统的经验设计法几乎失效。
为了突破这一瓶颈,研究团队开发出一个深度学习模型——TransSAFP,结合预训练 + 迁移学习策略,能够在少量实验数据的基础上,高效预测肽段的抗菌能力,并在模拟中引入11种N端自组装修饰,极大拓展了设计空间。
| Overview of the discovery workflow of the new SAFP materials
从模型预测到实验验证:抗菌率高达86%
研究人员利用TransSAFP在6–15个氨基酸长度的肽库中进行全景预测,并从中筛选出140条得分最高的候选序列。随后进行化学合成与实测,结果令人震撼:
121条序列(约86%)具有明确抗菌活性!
更令人兴奋的是,这些肽段不仅能对抗大肠杆菌、金黄色葡萄球菌等常见菌株,甚至在对抗耐药菌和生物膜方面展现出惊人效果。
The TransSAFP protocol for identifying potential SAFPs.
| Experimental validation and screening of SAFP candidates
明星抗菌肽 p45:性能媲美环丙沙星
其中一条名为p45的自组装肽表现尤为出色:
- 广谱抗菌:对14种致病菌有效,包括ESKAPE耐药菌株
- 自组装能力强:能在体内浓度下自动聚集成纳米纤维
- 不诱导耐药性:连续传代30次,MIC保持稳定
- 清除生物膜能力强:远超常用抗生素环丙沙星
- 体内疗效显著:在小鼠肠道感染模型中恢复肠道屏障、稳定微生物群落
简而言之,p45几乎就是AI设计的“理想抗菌肽”,具备临床转化的巨大潜力。
Prediction and analysis of SAFP in entire octapeptide library.
Therapeutic efficacy of p45 against intestinal infection
模型真的有“想象力”:挖掘了完全陌生的有效序列!
更令人期待的是,研究团队利用TransSAFP还进行了de novo筛选:从理论上组合出全部可能的8肽(超过2×10¹¹种),再预测其抗菌能力。
最终选出的新型SAFP(如octa-p2),与已知抗菌肽序列相似度极低,却依然在实测中表现出强效抗菌性!
这意味着:AI不只是模仿,它正在创造从未出现过的新型抗菌肽!
展望:从抗菌肽走向更多功能肽材料的智能设计
这项工作不仅为抗菌药物开发提供了新路线,也展示了一个强大的范式:通过深度学习辅助分子设计,打通计算与实验的闭环。
研究团队表示,未来TransSAFP框架还可扩展至其他功能,比如:
- 抗肿瘤肽
- 组织修复肽
- 靶向递送肽
- 生物成像肽等
这不仅是一次AI与化学生物交叉的突破,更可能是开启分子材料智能设计时代的关键一步!