dp解法 leetcode 363.矩形区域不超过 K 的最大数值和

该博客介绍了一种使用动态规划方法解决LeetCode 363题目的方法,即寻找矩阵内不超过K的最大数值和。作者详细解释了如何从整个矩阵开始,通过缩小矩阵的尺寸来找到满足条件的矩形区域,并给出了状态转移方程。最终代码以Java实现,时间复杂度为O(mmn*n),空间复杂度为O(mn)。
摘要由CSDN通过智能技术生成

题目
给你一个 m x n 的矩阵 matrix 和一个整数 k ,找出并返回矩阵内部矩形区域的不超过 k 的最大数值和。

题目数据保证总会存在一个数值和不超过 k 的矩形区域。
示例 1:
在这里插入图片描述
输入:matrix = [[1,0,1],[0,-2,3]], k = 2
输出:2
解释:蓝色边框圈出来的矩形区域 [[0, 1], [-2, 3]] 的数值和是 2,且 2 是不超过 k 的最大数字(k = 2
示例 2:
输入:matrix = [[2,2,-1]], k = 3
输出:3
作者dp的结果:
在这里插入图片描述

解析:
看到本题是在求小于K的最大和…本能的想到了dp(其实是因为最近一直在学dp)

第一步:首先假设k的值大于整个矩阵之和,也就是说把整个矩阵看作一个矩形,返回的max值就是整个矩阵所有元素值之和;

然后进行回溯递推

请思考一下,如果最大矩阵的和不满足条件,大于k或者不是sum值最大的矩阵,那么最大矩阵m*n的缩小后的第一步的矩阵是什么样子的
答案有两种可能,一种是变成(m-1)*n大小的矩阵,另一种是变成m*(n-1)大小的矩阵

不理解的话举个例子:
mn是一个3*3的矩阵,它是否可以看作一个3*2的矩阵加上一个2*3的矩阵,减去中间的2*2矩阵的部分,再加上(3,3)处的元素,可以试着在纸上画一下,画出来就明白了,相信我:)
作者在黑板上勾勾画画的思路:
在这里插入图片描述
画完就明白了,真的,思考下矩阵怎么变的就懂了

然后,通过这两种方法,反推回最大矩阵m*n,就可以得到dp的状态转移方程

dp[m][n] =dp[m-1][n]+dp[m][n-1]-dp[m-1][n-1]+matrix[m][n]
求出转移方程之后,剩下的地方就很简单了,只需要存储每次递推时矩阵数值和的最大值就可以了
下面上代码(java)

class Solution 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赵奕升

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值