leetcode 368.最大整除子集

这篇博客介绍了如何使用动态规划求解给定无重复正整数集合中的最大整除子集问题。通过排序数组,遍历每个元素并检查是否存在能被其整除的前驱元素,更新动态规划数组f[]和g[],最后根据最大长度回溯得到子集。代码实现简洁高效,时间复杂度为O(n^2),空间复杂度为O(n)。
摘要由CSDN通过智能技术生成

给你一个由 无重复 正整数组成的集合 nums ,请你找出并返回其中最大的整除子集 answer ,子集中每一元素对 (answer[i], answer[j]) 都应当满足:
answer[i] % answer[j] == 0 ,或
answer[j] % answer[i] == 0
如果存在多个有效解子集,返回其中任何一个均可。

示例 1:

输入:nums = [1,2,3]
输出:[1,2]
解释:[1,3] 也会被视为正确答案。
示例 2:

输入:nums = [1,2,4,8]
输出:[1,2,4,8]

dp做法:
在这里插入图片描述
本题中dp过程中某个序列状态的转移依赖于与前一个序列状态的关系。即 nums[i] 能否接在 nums[j] 后面,取决于序列能否满足 nums[i] % nums[j] == 0 这一条件

应分两种情况讨论
如果在i前面找不到符合条件nums[i] % nums[j] == 0的序列的时候,它自己作为整除子集的第一个数,意味着转移方程为f[i] = 1
在前面能找到符合条件的序列的情况下,取max(f[1],f[2],f[3],…f[ j ]),意思是将f[ i ]接到最大的f[ j ]的后面;转移方程为f[i+1] = f[i] + 1

简单的dp做法,直接上代码

class Solution {
    public List<Integer> largestDivisibleSubset(int[] nums) {
        Arrays.sort(nums);
        int n = nums.length;
        int[] f = new int[n];
        int[] g = new int[n];
        for (int i = 0; i < n; i++) {
            //起始长度为 1,每次判断是否由自身转移
            int len = 1, prev = i;
            for (int j = 0; j < i; j++) {
                if (nums[i] % nums[j] == 0) {
                    if (f[j] + 1 > len) {
                        len = f[j] + 1;
                        prev = j;
                    }
                }
            }
            // 记录最终长度和从何转移而来
            f[i] = len;
            g[i] = prev;
        }
        int max = -1, index = -1;
        for (int i = 0; i < n; i++) {
            if (f[i] > max) {
                index = i;
                max = f[i];
            }//遍历获得最大长度以及其对应下标
        }
        // 使用 g[] 数组回溯
        List<Integer> ans = new ArrayList<>();
        while (ans.size() != max) {
            ans.add(nums[index]);
            index = g[index];
        }
        return ans;
    }
}

时间复杂度:O(n*n)
空间复杂度:O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赵奕升

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值