给你一个由 无重复 正整数组成的集合 nums ,请你找出并返回其中最大的整除子集 answer ,子集中每一元素对 (answer[i], answer[j]) 都应当满足:
answer[i] % answer[j] == 0 ,或
answer[j] % answer[i] == 0
如果存在多个有效解子集,返回其中任何一个均可。
示例 1:
输入:nums = [1,2,3]
输出:[1,2]
解释:[1,3] 也会被视为正确答案。
示例 2:
输入:nums = [1,2,4,8]
输出:[1,2,4,8]
dp做法:
本题中dp过程中某个序列状态的转移依赖于与前一个序列状态的关系。即 nums[i] 能否接在 nums[j] 后面,取决于序列能否满足 nums[i] % nums[j] == 0 这一条件
应分两种情况讨论
如果在i前面找不到符合条件nums[i] % nums[j] == 0的序列的时候,它自己作为整除子集的第一个数,意味着转移方程为f[i] = 1
在前面能找到符合条件的序列的情况下,取max(f[1],f[2],f[3],…f[ j ]),意思是将f[ i ]接到最大的f[ j ]的后面;转移方程为f[i+1] = f[i] + 1
简单的dp做法,直接上代码
class Solution {
public List<Integer> largestDivisibleSubset(int[] nums) {
Arrays.sort(nums);
int n = nums.length;
int[] f = new int[n];
int[] g = new int[n];
for (int i = 0; i < n; i++) {
//起始长度为 1,每次判断是否由自身转移
int len = 1, prev = i;
for (int j = 0; j < i; j++) {
if (nums[i] % nums[j] == 0) {
if (f[j] + 1 > len) {
len = f[j] + 1;
prev = j;
}
}
}
// 记录最终长度和从何转移而来
f[i] = len;
g[i] = prev;
}
int max = -1, index = -1;
for (int i = 0; i < n; i++) {
if (f[i] > max) {
index = i;
max = f[i];
}//遍历获得最大长度以及其对应下标
}
// 使用 g[] 数组回溯
List<Integer> ans = new ArrayList<>();
while (ans.size() != max) {
ans.add(nums[index]);
index = g[index];
}
return ans;
}
}
时间复杂度:O(n*n)
空间复杂度:O(n)