题目:
一只青蛙想要过河。 假定河流被等分为若干个单元格,并且在每一个单元格内都有可能放有一块石子(也有可能没有)。
青蛙可以跳上石子,但是不可以跳入水中。 给你石子的位置列表 stones(用单元格序号 升序 表示),
请判定青蛙能否成功过河(即能否在最后一步跳至最后一块石子上)。 开始时,
青蛙默认已站在第一块石子上,并可以假定它第一步只能跳跃一个单位(即只能从单元格 1 跳至单元格 2 )。 如果青蛙上一步跳跃了 k
个单位,那么它接下来的跳跃距离只能选择为 k - 1、k 或 k + 1 个单位。
另请注意,青蛙只能向前方(终点的方向)跳跃。示例 1: 输入:stones = [0,1,3,5,6,8,12,17] 输出:true 解释:青蛙可以成功过河,按照如下方案跳跃:跳 1 个单位到第 2 块石子, 然后跳 2 个单位到第 3 块石子, 接着 跳 2 个单位到第
4 块石子, 然后跳 3 个单位到第 6 块石子, 跳 4 个单位到第 7 块石子, 最后,跳 5 个单位到第 8
个石子(即最后一块石子)。示例 2: 输入:stones = [0,1,2,3,4,8,9,11] 输出:false 解释:这是因为第 5 和第 6 个石子之间的间距太大,没有可选的方案供青蛙跳跃过去。
用例范围以及提示: 2 <= stones.length <= 2000
0 <=stones[i] <= 2的31次幂 - 1
stones[0] == 0
题源:https://leetcode-cn.com/problems/frog-jump/
解法1:优化DFS记忆化搜索:
先上代码和结果,后面解释:
class Solution {
public boolean canCross(int[] stones) {
// 回溯法递归
int n = stones.length;
Map<Integer, Boolean> map = new HashMap<>();
return DFS(stones, 0, 0, n, map);
}
/**
* index: 表示现在所处的索引
* k: 表示上一步跳跃了几个单元格
* n: 表示数组长度
* map: 表示经历过的状态
**/
private boolean DFS(int[] stones, int index, int k, int n, Map<Integer, Boolean> map) {
// 递归终止条件
// System.out.println("index:" + index + " k:" + k);
if (index == n - 1) {
return true;
}
int key = index * 1000 + k;
if (map.containsKey(