LeetCode Day11 栈与队列: 20. 有效的括号,1047. 删除字符串中的所有相邻重复项,150. 逆波兰表达式求值

目录

20. 有效的括号

(1) 题目描述

(2) 解题思路

1047. 删除字符串中的所有相邻重复项

(1) 题目描述

(2) 解题思路

150. 逆波兰表达式求值

(1) 题目描述

(2) 解题思路


20. 有效的括号

(1) 题目描述

20. 有效的括号

代码随想录:(文字版)

代码随想录:(视频版)

(2) 解题思路

由于栈结构的特殊性,非常适合做对称匹配类的题目。

字符串里的括号不匹配的情况分类:

  1. 第一种情况,左括号多余。 

  2. 第二种情况,括号没有多余,但是 括号的类型不匹配。 

  3. 第三种情况,右括号多余。 

Tips: 在匹配左括号的时候,右括号先入栈,就只需要比较当前元素和栈顶相不相等就可以了,比左括号先入栈代码实现要简单。

class Solution {
public:
    bool isValid(string s) {
        // 使用栈解决配对匹配问题
        // (1) 定义一个栈
        stack<char> st;
        // (2) 剪枝操作: 如果s的长度为奇数,一定不符合要求
        if (s.size() % 2 != 0) return false;
        // (3) 遍历字符串s中的元素,放入栈中进行匹配,注意不符合题目要求的三种情况
        for(int i = 0; i < s.size(); i++){
            // 识别到s中的左括号,在栈中放入对应右括号 --> 方便后续右括号匹配
            if(s[i] == '(') st.push(')');
            else if (s[i] == '[') st.push(']');
            else if (s[i] == '{') st.push('}');
            // (3.1) 第三种情况(右括号多余):遍历字符串匹配的过程中,栈已经为空了,没有匹配的字符了,说明右括号没有找到对应的左括号 return false
            else if (st.empty()) return false;
            // (3.2) 第二种情况(括号不多余,但是括号的类型不匹配):遍历字符串匹配的过程中,发现栈里没有我们要匹配的字符。所以return false
            // !!! else if (st.top() != s[i]) return false;  
            // --> error: invalid operands to binary expression ('void' and 'value_type' (aka 'char'))
            else if (st.empty() || st.top() != s[i]) return false;
            // 非第二、三中情况: st.top() 与 s[i]相等,栈弹出元素
            else st.pop();
        }
        // (3.3) 第一种情况(右括号多余):此时我们已经遍历完了字符串,但是栈不为空,
        // 说明有相应的左括号没有右括号来匹配,所以return false,否则就return true
        return st.empty();
    }
};

1047. 删除字符串中的所有相邻重复项

(1) 题目描述

1047. 删除字符串中的所有相邻重复项

代码随想录:(文字版)

代码随想录:(视频版)

(2) 解题思路

[1] 本题是匹配相邻元素,然后消除。--> 栈

栈: 存放遍历过的元素。当遍历当前的这个元素的时候,去栈里看一下我们是不是遍历过相同数值的相邻元素。

class Solution {
public:
    string removeDuplicates(string s) {
        // 使用栈匹配消除
        // (1) 定义栈 
        stack<char> st;
        // (2) 遍历字符串,判断相邻元素是否相同 
        for (char s : s) {
            // (2.1) 当栈为空或者当前元素与栈顶元素不同时,将当前元素压入栈顶
            if (st.empty() || s != st.top()){
                st.push(s); 
            } 
            // (2.2) 当前元素与栈顶元素相同时,这两元素抵消 --> 当前元素不加入栈,并且弹出栈顶元素
            else {
                st.pop();
            }
        }
        // (3) 定义空字符串存储结果
        string result = "";
        // (3.1) 将栈中元素放到result字符串汇总
        while (!st.empty()) {
            result += st.top();  // 将栈顶元素添加到结果字符串
            st.pop(); // 当前元素被添加后,被弹出 --> 删除
        }
        // (3.2) 注意字符串中元素顺序: 此时字符串需要反转一下
        reverse (result.begin(), result.end());
        return result;
    }
};

[2] 直接将字符串作为栈 --> 省去栈需转为字符串的操作。

字符串        头部                       尾部

                        ----------------------

                        ----------------------

= 栈          头部                       尾部

                        |----------------------

                        |----------------------

class Solution {
public:
    string removeDuplicates(string s) {
        // 使用字符串作为栈匹配消除
        // (1) 定义字符串 
        string result;
        // (2) 遍历字符串,判断相邻元素是否相同 
        for (char s : s) {
            // (2.1) 当字符串为空或者当前元素与字符串尾部元素不同时,将当前元素加入字符串尾部
            if (result.empty() || s != result.back()){
                result.push_back(s); 
            } 
            // (2.2) 当前元素与字符串尾部元素相同时,这两元素抵消 --> 当前元素不加入字符串,并且弹出字符串尾部元素
            else {
                result.pop_back();
            }
        }
        return result;
    }
};

150. 逆波兰表达式求值

(1) 题目描述

150. 逆波兰表达式求值

代码随想录:(文字版)

代码随想录:(视频版)

(2) 解题思路

逆波兰表达式:是一种后缀表达式,所谓后缀就是指运算符写在后面。

平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。

该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。

逆波兰表达式主要有以下两个优点:

  • 去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。

  • 适合用栈操作运算:遇到数字则入栈;遇到运算符则取出栈顶两个数字进行计算,并将结果压入栈中。

逆波兰表达式相当于是二叉树中的后序遍历

class Solution {
public:
    int evalRPN(vector<string>& tokens) {
    // 使用栈的后缀表达式
        // (1) 定义栈
        stack<long long> st;
        // (2) 遍历字符串,通过栈实现逆波兰表达式
        for (int i = 0; i < tokens.size(); i++){
            // (2.1) 当元素为符号时
            if (tokens[i] == "+" || tokens[i] == "-" || tokens[i] == "*" || tokens[i] == "/"){
                // 取出栈中前两个数字
                long long num1 = st.top();
                st.pop();
                long long num2 = st.top();
                st.pop();
                // 对前两个数字进行符号操作,并将结果压入栈中
                if(tokens[i] == "+") st.push(num2 + num1);
                if(tokens[i] == "-") st.push(num2 - num1);
                if(tokens[i] == "*") st.push(num2 * num1);
                if(tokens[i] == "/") st.push(num2 / num1);
            // (2.2) 当元素为数字时,压入栈里
            } else {
                st.push(stoll(tokens[i]));
            }
        }
        // (3) 返回结果
        int result = st.top();
        st.pop(); // 把栈里最后一个元素弹出(其实不弹出也没事)--> 释放内存
        return result;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值