目录
20. 有效的括号
(1) 题目描述
(2) 解题思路
由于栈结构的特殊性,非常适合做对称匹配类的题目。
字符串里的括号不匹配的情况分类:
-
第一种情况,左括号多余。
-
第二种情况,括号没有多余,但是 括号的类型不匹配。
-
第三种情况,右括号多余。
Tips: 在匹配左括号的时候,右括号先入栈,就只需要比较当前元素和栈顶相不相等就可以了,比左括号先入栈代码实现要简单。
class Solution {
public:
bool isValid(string s) {
// 使用栈解决配对匹配问题
// (1) 定义一个栈
stack<char> st;
// (2) 剪枝操作: 如果s的长度为奇数,一定不符合要求
if (s.size() % 2 != 0) return false;
// (3) 遍历字符串s中的元素,放入栈中进行匹配,注意不符合题目要求的三种情况
for(int i = 0; i < s.size(); i++){
// 识别到s中的左括号,在栈中放入对应右括号 --> 方便后续右括号匹配
if(s[i] == '(') st.push(')');
else if (s[i] == '[') st.push(']');
else if (s[i] == '{') st.push('}');
// (3.1) 第三种情况(右括号多余):遍历字符串匹配的过程中,栈已经为空了,没有匹配的字符了,说明右括号没有找到对应的左括号 return false
else if (st.empty()) return false;
// (3.2) 第二种情况(括号不多余,但是括号的类型不匹配):遍历字符串匹配的过程中,发现栈里没有我们要匹配的字符。所以return false
// !!! else if (st.top() != s[i]) return false;
// --> error: invalid operands to binary expression ('void' and 'value_type' (aka 'char'))
else if (st.empty() || st.top() != s[i]) return false;
// 非第二、三中情况: st.top() 与 s[i]相等,栈弹出元素
else st.pop();
}
// (3.3) 第一种情况(右括号多余):此时我们已经遍历完了字符串,但是栈不为空,
// 说明有相应的左括号没有右括号来匹配,所以return false,否则就return true
return st.empty();
}
};
1047. 删除字符串中的所有相邻重复项
(1) 题目描述
(2) 解题思路
[1] 本题是匹配相邻元素,然后消除。--> 栈
栈: 存放遍历过的元素。当遍历当前的这个元素的时候,去栈里看一下我们是不是遍历过相同数值的相邻元素。
class Solution {
public:
string removeDuplicates(string s) {
// 使用栈匹配消除
// (1) 定义栈
stack<char> st;
// (2) 遍历字符串,判断相邻元素是否相同
for (char s : s) {
// (2.1) 当栈为空或者当前元素与栈顶元素不同时,将当前元素压入栈顶
if (st.empty() || s != st.top()){
st.push(s);
}
// (2.2) 当前元素与栈顶元素相同时,这两元素抵消 --> 当前元素不加入栈,并且弹出栈顶元素
else {
st.pop();
}
}
// (3) 定义空字符串存储结果
string result = "";
// (3.1) 将栈中元素放到result字符串汇总
while (!st.empty()) {
result += st.top(); // 将栈顶元素添加到结果字符串
st.pop(); // 当前元素被添加后,被弹出 --> 删除
}
// (3.2) 注意字符串中元素顺序: 此时字符串需要反转一下
reverse (result.begin(), result.end());
return result;
}
};
[2] 直接将字符串作为栈 --> 省去栈需转为字符串的操作。
字符串 头部 尾部
----------------------
----------------------
= 栈 头部 尾部
|----------------------
|----------------------
class Solution {
public:
string removeDuplicates(string s) {
// 使用字符串作为栈匹配消除
// (1) 定义字符串
string result;
// (2) 遍历字符串,判断相邻元素是否相同
for (char s : s) {
// (2.1) 当字符串为空或者当前元素与字符串尾部元素不同时,将当前元素加入字符串尾部
if (result.empty() || s != result.back()){
result.push_back(s);
}
// (2.2) 当前元素与字符串尾部元素相同时,这两元素抵消 --> 当前元素不加入字符串,并且弹出字符串尾部元素
else {
result.pop_back();
}
}
return result;
}
};
150. 逆波兰表达式求值
(1) 题目描述
(2) 解题思路
逆波兰表达式:是一种后缀表达式,所谓后缀就是指运算符写在后面。
平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。
逆波兰表达式主要有以下两个优点:
去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
适合用栈操作运算:遇到数字则入栈;遇到运算符则取出栈顶两个数字进行计算,并将结果压入栈中。
逆波兰表达式相当于是二叉树中的后序遍历
class Solution {
public:
int evalRPN(vector<string>& tokens) {
// 使用栈的后缀表达式
// (1) 定义栈
stack<long long> st;
// (2) 遍历字符串,通过栈实现逆波兰表达式
for (int i = 0; i < tokens.size(); i++){
// (2.1) 当元素为符号时
if (tokens[i] == "+" || tokens[i] == "-" || tokens[i] == "*" || tokens[i] == "/"){
// 取出栈中前两个数字
long long num1 = st.top();
st.pop();
long long num2 = st.top();
st.pop();
// 对前两个数字进行符号操作,并将结果压入栈中
if(tokens[i] == "+") st.push(num2 + num1);
if(tokens[i] == "-") st.push(num2 - num1);
if(tokens[i] == "*") st.push(num2 * num1);
if(tokens[i] == "/") st.push(num2 / num1);
// (2.2) 当元素为数字时,压入栈里
} else {
st.push(stoll(tokens[i]));
}
}
// (3) 返回结果
int result = st.top();
st.pop(); // 把栈里最后一个元素弹出(其实不弹出也没事)--> 释放内存
return result;
}
};