P2871 手链 By C++

题目描述

Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).

Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.

有N件物品和一个容量为V的背包。第i件物品的重量是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。

输入输出格式

输入格式:

 

* Line 1: Two space-separated integers: N and M

* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di

第一行:物品个数N和背包大小M

第二行至第N+1行:第i个物品的重量C[i]和价值W[i]

 

输出格式:

 

* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints

输出一行最大价值。

 

输入输出样例

输入样例#1: 复制

4 6
1 4
2 6
3 12
2 7

输出样例#1: 复制

23

这道题很显然,需要用01背包问题解决,下面提供四种解法(仅第四种AC),由易到难

1.记忆化递归,容易理解但浪费空间

#include <bits/stdc++.h>

using namespace std;

int n;
int w[3405], v[12882];
//n+1个之后的物品可用,背包剩余容量为W+1 
int dp[3405][12882] = {0};

int dfs(int s, int W)
{
	if(dp[s][W] >= 1)
		return dp[s][W];
	if(s >= n)
		dp[s][W] = 0;
	else if(w[s] > W)
		dp[s][W] = dfs(s+1, W);
	else
		dp[s][W] = max(dfs(s+1, W), dfs(s+1, W-w[s]) + v[s]);
	return dp[s][W];
}

int main()
{
	int W;
	scanf("%d%d", &n, &W);
	for(int i = 0; i < n; i++)
		scanf("%d%d", &w[i], &v[i]);
	printf("%d\n", dfs(0, W));
	return 0;
}

2.递推式,但是仍然是二维数组。

#include <bits/stdc++.h>

using namespace std;


int main()
{
	int n, W;
	scanf("%d%d", &n, &W);
	int w[n+1], v[W+1];
	//n+1个之后的物品可用,背包剩余容量为W+1 
	int dp[n+1][W+1] = {0};
	for(int i = 0; i < n; i++)
		scanf("%d%d", &w[i], &v[i]);
	for(int i = n-1; i >= 0; i--)
		for(int j = 0; j <= W; j++)
			if(j < w[i])
				dp[i][j] = dp[i+1][j];
			else
				dp[i][j] = max(dp[i+1][j], dp[i+1][j-w[i]] + v[i]);
	printf("%d\n", dp[0][W]);
	return 0;
}

3.递推式,但是仍然是二维数组。

#include <bits/stdc++.h>

using namespace std;


int main()
{
	int n, W;
	scanf("%d%d", &n, &W);
	int w[n+2], v[W+2];
	//前n+1个物品,总重量小于等于W+1的最大价值
	int dp[n+1][W+1] = {0};
	for(int i = 1; i <= n; i++)
		scanf("%d%d", &w[i], &v[i]);
	for(int i = 1; i <= n; i++)
		for(int j = W; j >= w[i]; j--)
			if(j < w[i])
				dp[i][j] = dp[i-1][j];
			else
				dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]);
	printf("%d", dp[n][W]);
	return 0;
}

4.递推式,一维数组,省时省空间。

#include <bits/stdc++.h>

using namespace std;


int main()
{
	int n, W;
	scanf("%d%d", &n, &W);
	int w[n+2], v[W+2];
    //重量为W+1时可获得的最大价值
	int dp[W+1] = {0};
	for(int i = 1; i <= n; i++)
		scanf("%d%d", &w[i], &v[i]);
	for(int i = 1; i <= n; i++)
		for(int j = W; j >= w[i]; j--)
			if(dp[j] < dp[j-w[i]]+v[i])
				dp[j] = dp[j-w[i]] + v[i];
	printf("%d", dp[W]);
	return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值