分析时间复杂度

前言

算法是程序的灵魂,那么一段程序又是什么,想必大家都听说过这个概念吧~~程序=数据结构+算法,数据结构与算法是相辅相成,既有联系又有区别。


一、时间复杂度分析

1.1、概述

算法由控制结构和原操作构成,我们分析一个算法是撇开计算机的硬件和软件的这些因素,仅考虑算法本身的效率。算法的执行时间主要与问题规模有关。
我们取一段程序的渐进上界,作为一段程序的时间复杂度,且低阶项在决定渐进确界的时候可以忽略不记,例如:O(n2+n) = O(n2)。反之,紧凑下界也是类似。

1.2、时间复杂度示例

从上至下,时间复杂度依次递增,每次碰到一个时间复杂度高的算法,我们要尽量往低的优化。

简称执行次数时间复杂度
常数阶6O(1)
线性阶6n+6O(n)
平方阶6n2+6n+6O(n2)
对数阶6log2n+6O(logn)
nlogn阶6nlog2n+6O(nlogn)
立方阶6n3+6n2+6n+6O(n3)
指数阶2n+6O(2n)

二、数列求和

2.1、等差数列

首项为a1,公差为d(d!=0)的数列a1,a1+d, a1+2d, …, a1+(n-1)d
通项公式:an=a1+(n-1)d
前n项的和: Sn = n/2 [2a1+(n-1)d] = n/2(a1+an)

2.1、等比数列

首项为a1,公比为q(q!=0)的数列a1,a1q, a1q2, …, a1q(n-1)
通项公式:an=qn-1
前n项的和:
                  Sn = na1,                        q=1
                  Sn = (a1(1-qn ) ) / (1-q) , q!=1

2.3、常见数列前n项的和

在这里插入图片描述

2.4、数列类型的时间复杂度推导

程序代码:

#include <iostream>
using namespace std;
void solve(){
	int sum=0;
	for(int i=0;i<n;i++){
		for(int j=0;j<i;j++){
			for(int k=0;k<j;k++)
				sum++;
		}
	}
	return;
}

int main(int argc, char *argv[])
{
	solve();
	return 0;
}

时间复杂度分析:有些人能一眼看出这个程序的时间复杂度是多少,对,就是O(n3),但是你能够写出如何推导的过程吗?下面我们就来推导下上面这段程序的时间复杂度吧!

时间复杂度推导:
在这里插入图片描述
通过上述推导,我们得到时间复杂度为O(n3)

三、递推式计算:递归算法的分析

3.1、程序代码:

#include <iostream>
#include <vector>
using namespace std;

//归并排序采用分治的思想,先分后治
vector<int> mergesort(vector<int> before) {
	if (before.size() == 1)return before; //这是递归出口,二路分割到最后只剩一个元素
	vector<int>left, right, add_left_right;
	//先分
	for (int i = 0; i < before.size() / 2; i++) {
		left.push_back(before[i]);
	}
	for (int i = before.size() / 2; i < before.size(); i++) {
		right.push_back(before[i]);
	}
	//继续递归分割
	left = mergesort(left);
	right = mergesort(right);

	//后治
	int i = 0, j = 0;
	while (i < left.size() && j < right.size()) { //左右两块,进行比较排序
		if (left[i] < right[j]) {
			add_left_right.push_back(left[i]);
			i++;
		}
		else {
			add_left_right.push_back(right[j]);
			j++;
		}
	}
	if (i == left.size()) {   //左边排好,接着排右边剩下的数
		for (int k = j; k < right.size(); k++) {
			add_left_right.push_back(right[k]);
		}
	}
	if (j == right.size()) {
		for (int k = i; k < left.size(); k++) {
			add_left_right.push_back(left[k]);
		}
	}
	return add_left_right;
}

void solve() {
	int n;
	vector<int> my_array;
	while (cin >> n) {
		my_array.push_back(n);
	}
	my_array = mergesort(my_array);
	vector<int>::iterator iter;
	for ( iter = my_array.begin(); iter < my_array.end(); iter++) {
		cout << *iter << " ";
	}
	cout << endl;
}

int main() {
	solve();
	return 0;
}

3.2、直接推导法

3.2.1、时间复杂度分析:

递归算法是将大问题分解一个个小问题进行求解,分析递归算法的关键就是建立递推关系式,然后求解得到时间复杂度。
归并算法的递推关系式:
在这里插入图片描述

3.2.2、推导公式:

在这里插入图片描述

3.3、主方法

3.3.1、一般公式:

T(n)=aT(n/b)+f(n)

3.3.2、比较过程:

  1. 函数nlogba比函数f(n)大,则T(n) = O(nlogba
  2. 函数nlogba比函数f(n)相等,则T(n) = O(nlogbalog2n
  3. 函数nlogba比函数f(n)小,则T(n) = O(f(n))

3.3.3推导例子:

如3.1的程序,递推公式为2(T(n/2)+n)
则nlogba=nlog22=n,f(n)=n;
得到:nlog22==f(n);
所以根据比较过程得到T(n)= nlog2n


总结

算法是程序的灵魂,数据结构与算法是相辅相成,既有联系又有区别。学习好时间复杂度的分析尤为重要。

如有错误,敬请指正!

  • 5
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值