11. 微积分 - 偏导数&方向导数

本文介绍了偏导数和方向导数的概念,偏导数是针对多元函数中每个自变量的导数,求解过程与一元函数导数相同。在多元函数的实际情况中,特别是在人工智能领域,偏导数对于理解和处理复杂的多元函数关系至关重要。方向导数则允许沿着任意方向求导,不仅限于自变量方向,与偏导数不同的是,方向导数考虑了函数变化与移动方向的关系。文章还讨论了方向余弦和投影的概念,这些都在方向导数的计算中起到关键作用。
摘要由CSDN通过智能技术生成

茶桁的AI秘籍 Math - 11


Hi, 大家好。我是茶桁。

我们上节课学习了链式法则,本节课,我们要学习「偏导数」和「方向导数」。

偏导数

偏导数在导论课里面也提到过。偏导数针对多元函数去讲的。

多元函数是什么,我们拿个例子来看:
多元函数: y = f ( x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

茶桁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值