22. 概率与统计 - 贝叶斯统计&机器学习分类指标

本文介绍了贝叶斯统计的概念,包括贝叶斯公式及其背后的先验概率和后验概率,并通过实例解释了后验概率的计算。此外,文章还探讨了机器学习分类指标,如精确率、准确率和召回率,强调了在评估模型性能时需要平衡精确率和召回率的重要性。
摘要由CSDN通过智能技术生成


在这里插入图片描述

Hi, 你好。我是茶桁。

今天让我们来学习一下「贝叶斯统计」和「机器学习分类指标」,这两部分结束之后,咱们《概率和统计》的部分就结束了。不知道这段时间的内容对大家是否有帮助。

好,咱们正课走起。

贝叶斯统计

贝叶斯是非常厉害的一个人,在统计学里面贝叶斯做出了太多的贡献。就包括在概率里面,有频率派,也有贝叶斯派。当然在机器学习里面,也有贝叶斯派。就是从贝叶斯的角度去考虑机器学习的模型,和神经网络的连接主义是对立的关系。

说到贝叶斯统计,肯定绕不开贝叶斯公式,一个大数学家、统计学家提出的这么一个公式。以他命名的公式如下:

P(Y|X) = P(X|Y)P(Y) / P(X)

这个式子特别简单,就是由条件概率和联合概率的公式得到的。为什么能得到这个式子?咱们把分母P(X)乘到式子左边去,左边P(Y|X)乘以P(X),不就是X和Y的联合概率嘛。等式左右两边都是一个联合概率,所以把P(X)拿到右边作为分母,这个式子就出来了。就是这么简单,贝叶斯公式就是这么简单。

我们来看一下这个公式里面各个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

茶桁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值