AcWing: 139. 回文字串的最大长度 hash和manacher算法

文章介绍了如何求解字符串中最长回文子串的问题,提供了两种方法:暴力双指针(会超时)和结合hash与Manacher算法的高效解决方案。Manacher算法能在O(N)时间复杂度内找出所有回文子串的中心,并给出最长回文子串的长度。代码示例中展示了如何应用Manacher算法和hash函数来优化解题过程。
摘要由CSDN通过智能技术生成

AcWing: 139.回文子串的最大长度

目录

题目描述

输入格式

输出格式

输入样例:

输出样例:

算法介绍

 hash算法

manacher算法

算法功能

算法实现

算法代码实现:

解题思路

第一种方式:直接进行暴力双指针(会超时)

第二种方法:hash+manacher+二分算法

代码实现


题目描述

如果一个字符串正着读和倒着读是一样的,则称它是回文的。

给定一个长度为 N 的字符串 S,求他的最长回文子串的长度是多少。

输入格式

输入将包含最多 30 个测试用例,每个测试用例占一行,以最多 1000000 个小写字符的形式给出。

输入以一个以字符串 END 开头的行表示输入终止。

输出格式

对于输入中的每个测试用例,输出测试用例编号和最大回文子串的长度(参考样例格式)。

每个输出占一行。

输入样例:
abcbabcbabcba
abacacbaaaab
END
输出样例:
Case 1: 13
Case 2: 6

算法介绍

 hash算法

这个算法我在另一篇博客写过,大家可以到那个博客里看这个算法的介绍和使用

hash算法的介绍(例题)

manacher算法

处理回文字符串的算法:Manacher(俗称“马拉车”)。

算法功能

回文字符串的通俗定义是:如果一个字符串正着读或反着读都一样,那么称这个字符串为回文字符串。Manacher的作用就是在O(N)的时间复杂度下求出以每个位置为回文中心的回文半径。

算法实现

接下来我们来看看Manacher算法的原理和实现方法吧。

我们还是采用动态规划的思想,假设0~i的位置的回文半径都求出来了,那么怎么求第i+1个位置的回文半径呢?

考虑如果i+1这个位置在被之前覆盖范围最远的一个回文串包含(假设这个回文串的回文中心为j),那么i+1关于j对称的位置(不妨设为k)就可以转移到i+1这个位置,给i+1位置的回文半径一个初始的值。如果不被之前求过的任意字符串包含的话,那么显然为1(它自己)。

接下来我们要考虑是否i+1位置和k位置的差别。显然,i+1个位置可能还可以继续拓展,那么直接拓展即可(想想时间复杂度为什么是对的)。

我们把每个字符作为回文中心去处理,那么很显然对于长度为偶数的回文串无法得到很好的处理,怎么办呢?

其实我们只要在每个字符中间加入一个该字符串没有的符号,并且在头尾加入没出现过的不同的符号就行了(如下面这个字符串)。

 

算法代码实现:

int n = strlen(s + 1) * 2;
        for (int i = n; i; i -= 2)
        {
            s[i] = s[i / 2];
            s[i - 1] = 'z' + 1;
        }

解题思路

该题的思路是:

        我们可以依次枚举每个点两边的数据,找到以这个点为中心的两边点的回文字符串的最大长度,然后进行最大长度的比较。这个是基本思路,然而直接计算的时候,我们可以考虑两种方式:1. 直接暴力,通过双指针来进行查找这个最长字串;2.可以通过hash的方式先进行前缀和的计算,然后进行相同长度子串的截取,然后判断两个子串是否相等。

第一种方式:直接进行暴力双指针(会超时)

这种方法的算法复杂度最差的n*n,通过这个数据范围看,这个方法的时间复杂度会超时,我们需要考虑优化的方法。

第二种方法:hash+manacher+二分算法

这个方法我们先考虑为什么需要manacher这个算法,当我们计算回文子串时,回文字串的长度有两种,一种是偶数形式,一种是奇数形式;当为偶数的时候,子串的最中间是间隔;而为奇数的时候,子串的最中间是一个字母。

如果直接写的话,需要两种判断方式,感觉比较麻烦,那么我们就想一种方法来优化,那么就可以使用manacher算法来进行优化,将该字符串进行扩大一倍,每两个字母之间插入一个比每个字母都大的字符,这样就可以完美的解决了两种解决方式不一样的结果。

了解了这个算法之后,我们进行解决这个题:

我们先进行manacher算法的运用,因为需要计算回文子串,又根据回文子串的性质,我们可以通过创建两个相反的字符串哈希子串,进行计算可以减少时间复杂度。因为这个,我们可以先进行字符串的哈希处理,然后就开始二分法来求以中心点为i,半径为mid的方法来进行判断怎么求得到的子串长度最大,我们判断的时候值得注意的是,我们对于两个字符串哈希数组的范围计算,然后进行判断,来确定 r 和 l 来确定的范围。

基本思路就是这些,更多细节请看代码。

该题思路理清后建议自己根据思路,不看代码,自己写一遍,毕竟看懂了和会写了还是有区别的

以下代码不给注释也是想让读者根据这个思路来自己联想代码的实现方式。

代码实现

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
typedef unsigned long long ULL;
const int N = 2000005;
char str[2000005];
ULL hb[N],he[N],P[N];
const int base = 131;

ULL get_hash(ULL h[],ULL l,ULL r)
{
    return h[r] - h[l - 1] * P[r-l+1];
}

int main (void)
{
    int T = 1;
    while(scanf("%s",str+1),strcmp(str+1,"END"))
    {
        int n = strlen(str+1)*2;
        for(int i = n ; i; i-=2)
        {
            str[i] = str[i/2];
            str[i-1] = 'z' + 1;
        }
        P[0] = 1;
        for(int i = 1, j = n; i <= n; i++, j--)
        {
            hb[i] = hb[i-1] * base + str[i] - 'a' +1;
            he[i] = he[i-1] * base + str[j] - 'a' +1;
            P[i] = P[i-1] * base;
        }
        ULL ans = 0;
        for(int i = 1; i <= n; i++)
        {
            ULL l = 0, r = min(i - 1,n - i);
            while(r > l)
            {
                ULL mid = (l + r + 1)/ 2;
                if(get_hash(hb,i - mid,i-1) != get_hash(he,n - (i + mid)+1,n - i)) r = mid-1;
                else l = mid;
            }
            if(str[i-l] <= 'z') ans = max(ans,l+1);
            else ans = max(ans,l);
        }
        printf("Case %d: %d\n",T++,ans);
    }
    
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值