这些天终于可以闲下来整理一下弥补一下遗忘的知识:
先序,后序,中序针对二叉树。深度、广度针对普通树。
深度遍历:从树根开始扫描,顶层扫描完了,从一层最左(也可以右)面的结点往下层扫描,直到下层已无结点,这时所有靠最左(右)的结点全部扫描完毕,从树梢往上退一层,看这层旁有无兄弟结点,有的话还是一样从最左(右)边开始扫描,这是个递归概念,利用这一方法来遍历整棵树。
广度遍历:从树根开始扫描,顶层扫描完了,扫描一层的所有结点,扫描二层的所有结点,……,扫描最底层的结点。
对于一颗二叉树,深度优先搜索(Depth First Search)是沿着树的深度遍历树的节点,尽可能深的搜索树的分支。以上面二叉树为例,深度优先搜索的顺序
为:ABDECFG。怎么实现这个顺序呢 ?深度优先搜索二叉树是先访问根结点,然后遍历左子树接着是遍历右子树,因此我们可以利用堆栈的先进后出的特点,
现将右子树压栈,再将左子树压栈,这样左子树就位于栈顶,可以保证结点的左子树先与右子树被遍历。
广度优先搜索(Breadth First Search),又叫宽度优先搜索或横向优先搜索,是从根结点开始沿着树的宽度搜索遍历,上面二叉树的遍历顺序为:ABCDEFG.
可以利用队列实现广度优先搜索。
下面给出二叉树dfs和bfs的具体代码:
1 #include <vector> 2 #include <iostream> 3 #include <stack> 4 #include <queue> 5 using namespace std; 6 7 struct BitNode 8 { 9 int data; 10 BitNode *left, *right; 11 BitNode(int x) :data(x), left(0), right(0){} 12 }; 13 14 void Create(BitNode *&root) 15 { 16 int key; 17 cin >> key; 18 if (key == -1) 19 root = NULL; 20 else 21 { 22 root = new BitNode(key); 23 Create(root->left); 24 Create(root->right); 25 } 26 } 27 28 void PreOrderTraversal(BitNode *root) 29 { 30 if (root) 31 { 32 cout << root->data << " "; 33 PreOrderTraversal(root->left); 34 PreOrderTraversal(root->right); 35 } 36 } 37 38 //深度优先搜索 39 //利用栈,现将右子树压栈再将左子树压栈 40 void DepthFirstSearch(BitNode *root) 41 { 42 stack<BitNode*> nodeStack; 43 nodeStack.push(root); 44 while (!nodeStack.empty()) 45 { 46 BitNode *node = nodeStack.top(); 47 cout << node->data << ' '; 48 nodeStack.pop(); 49 if (node->right) 50 { 51 nodeStack.push(node->right); 52 } 53 if (node->left) 54 { 55 nodeStack.push(node->left); 56 } 57 } 58 } 59 60 //广度优先搜索 61 void BreadthFirstSearch(BitNode *root) 62 { 63 queue<BitNode*> nodeQueue; 64 nodeQueue.push(root); 65 while (!nodeQueue.empty()) 66 { 67 BitNode *node = nodeQueue.front(); 68 cout << node->data << ' '; 69 nodeQueue.pop(); 70 if (node->left) 71 { 72 nodeQueue.push(node->left); 73 } 74 if (node->right) 75 { 76 nodeQueue.push(node->right); 77 } 78 } 79 } 80 81 int main() 82 { 83 BitNode *root = NULL; 84 Create(root); 85 //前序遍历 86 PreOrderTraversal(root); 87 //深度优先遍历 88 cout << endl << "dfs" << endl; 89 DepthFirstSearch(root); 90 //广度优先搜索 91 cout << endl << "bfs" << endl; 92 BreadthFirstSearch(root); 93 }