金融大数据项目实训
iyguftyuv
这个作者很懒,什么都没留下…
展开
-
项目实训第五周(十五)
项目实现过程的最后:修正(Action)在每一个迭代完成以后,都会进行验收,这个需要提出建议,而验收完成之后,都会进行总结会议,在这个会议上,让大家畅所欲言,非常重要。在这个会议上,创造一种宽松的氛围,这样大家才会把自己的心理话说出来,一般来说,会议的时候,我会发便利贴给团队成员,写出前一个阶段做得好的和做的不好的三件事,不能只盯着缺点。根据团队成员写的优点和缺点,收集起来以后,对于优点,需要分析为什么做的好,是顺应的习惯,还是说磨合好了,还是有哪些人做的好,需要强调的是,不要过多强调个人作用,而应该原创 2021-07-28 17:32:41 · 99 阅读 · 0 评论 -
项目实训第五周(十四)
关于项目执行过程中的问题:规划完成以后,团队就要进行执行阶段,在这个阶段产品负责人给大家讲解需求,UI设计给出最新的设计,开发人员开始搭建框架、设计数据库、开始进入开发进度,而测试也开始写测试用例,一旦开发完成一项,就开始测试。在这个过程中,项目经理要进行进度的监控,可以使用燃尽图可以很好的跟进项目,每天的例会, 对于昨天完成了什么,今天准备做什么,这样得到团队成员的进度,当然更多的是暴露问题,把开发过程中遇到的问题, 有各种各样的问题需要跟进。如果是需求的问题,需要产品经理来澄清,这样可能修正设计,原创 2021-07-28 17:31:03 · 100 阅读 · 0 评论 -
项目实训第五周(十三)
项目已经初步完成,在此写一下作为项目经理的感悟:计划(Plan)作为项目的主导者,项目经理主导整个项目,这样需要项目经理主动规划的能力,在这个过程中,没有人会督促你,告诉你要做什么,他们只会跟你要成果。这个成果包括项目的产出、系统、文档、员工的绩效、成本的支出等等。那作为项目经理,根据这些产出,进而反推回来,指导什么时候要做什么事情,这就是规划。对于人的规划,这个需要知道团队资源的可用情况,包括共用的人员,需要建立资源日历,把假期,员工请假都标记出来,这样对于人力资源的可用情况一目了然,才能知道可原创 2021-07-28 17:22:51 · 100 阅读 · 0 评论 -
项目实训(十二)
项目系统已经基本组成前后端:整个部分已经基本完成。已经完成对于时序性股票预测的分析和展示算法部分:时序性预测负责人员象征性采用了分类相似性预测的几只股票进行分析预测,由于目前组装好的系统项目是根据之前的一只股票组装成的,所以具体效果要等到更新完之后的系统改进之后才能更具体的观察。(对负责此模块的人员较为不满)...原创 2021-07-25 20:20:01 · 83 阅读 · 0 评论 -
项目实训第四周(十一)
前后端部分前后端部分完成了对于时序预测部分的展示,结果如下:后端部分仍然每天都在进行调用tushare接口来更新数据库中对应的数据以及数据预测中算法对应权值算法部分相似性预测方面快要完成最后的尾声。时序预测方面仍然只能预测一只股票...原创 2021-07-25 20:03:38 · 70 阅读 · 0 评论 -
项目实训第四周(十)
本周制定的计划为完成金融大数据预测系统的组装前后端预计完成组装,先结合已经实现的算法来具体组装成demo,如果后续算法有改进的话,再进行改动:前端k线图部分如下:算法部分分类预测部分:经过挑选,在上证五十支股票里面挑选了分类效果较好的三十五至股票来进行分类并进行预测,准确率在百分之五十左右。时序预测部分:目前仍是对一只股票进行预测,其他的计算有失误,正确率达到了百分之七十到八十左右,正在寻找原因。...原创 2021-07-25 19:54:29 · 105 阅读 · 0 评论 -
项目实训第三周(九)
经过三周,前后端部分以及算法部分基本都已完成,准备下一周完成最终的组装。总体来说打算用pythonweb的形式来完成此项目,即采用vue+django框架来完成。 首先对于所需要的数据方面,我们所要进行分析和预测的数据来自于tushare–一个免费、开源的python财经数据接口包。 再下一周会对项目进行具体的组装和描述,在此部进行过多的描述...原创 2021-07-18 18:39:44 · 56 阅读 · 0 评论 -
项目实训第三周(八)
算法部分本周‘;重点于cnn算法的改进卷积神经网络 – CNN 解决的第一个问题就是「将复杂问题简化」,把大量参数降维成少量参数,再做处理。典型的 CNN 由3个部分构成:1 卷积层2 池化层3 全连接层如果简单来描述的话:卷积层负责提取图像中的局部特征;池化层用来大幅降低参数量级(降维);全连接层类似传统神经网络的部分,用来输出想要的结果。卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforwar原创 2021-07-18 18:23:47 · 137 阅读 · 0 评论 -
项目实训第三周(七)
这一周开始了各个部分的结尾部分前端部分页面基本完成,本来的页面如下:但是曲线图过于圆滑显得数据太过于复杂难于区分,所以特地将其变为折线图,如下:原创 2021-07-18 18:05:33 · 65 阅读 · 0 评论 -
项目实训第二周(六)
最近两天忙于各种事,但是还是在这周的末尾制定出了小组下一周的计划如下:算法部分庞广龙:首先搞懂cnn不同参数顺序对于预测准确率的影响(以五只股票为例子)总结出为什么不同的原因,并借此进行一定改正。其次关于噪声异常点处理 的问题,例如那只正确率百分之八十但是拟合度很低的股票,对其进行异常点数据的判断和优化,改良归一化操作。周五展示结果李杉:同样,思考噪声异常点处理的问题,以及能否对加权的权重进行改良?(为什么采用给定自身固定权值再结合其他股票来预测的方法?同样能否对其进行改良?)原创 2021-07-11 22:17:40 · 103 阅读 · 0 评论 -
项目实训第二周(五)
首先,由于前端界面的完善,得到了前端界面的完全图,从而借此完善了关于需求方面的文档。初步完成了第二周进度总结:将股票视为时序数据,采时序方法进行股票趋势预测此方向主要为CNN-LSTM 模型基于时序数据预测股票价格目前已完成对于股票的传统方法ARIMA的预测,但由于ARIMA是线性的预测,导致预测效果并不是很好,如下:所以决定只进行基础展示,不进行扩展。CNN-LSTM 模型基于时序数据预测股票收盘价格方面,首先是对于000001.sh(上证指数,)的相关论文的学习之后,并且完成其相关原创 2021-07-09 09:47:34 · 102 阅读 · 0 评论 -
项目实训 第二周 (四)
作为项目经理,对于团队整个项目的需求文档有了更好的完善如下: 前后端部分: 同时规定好了前后端之间交换的json数据交换格式,里面包括trade_date,open,high,low,close,pre_close,change,pct_chg,vol,amount数据。 其次由于前后端之间由于初次学习django和vue,使得进展遇到了路由配置的问题,登录无法实现,导致项目进度略有推迟,负责前端的同学由于对于vue前端知识并不原创 2021-07-07 15:03:09 · 130 阅读 · 0 评论 -
项目实训(三)2021.7.4
本次博客作为对于本周小组内成员工作的总结。前端部分姜昕彤完成了对于前端所需框架以及所需要用来进行数据可视化的echarts的初步学习,可以初步对于前端的简略界面做出规划,待到可以与后端交互的时候便可以做出具体数据图,其简单表示如下:后端部分张迎奥已经完成了对于pythonweb的框架django的初步学习以及通过python来调用mysql相关语句进行增删改查,下一周可以进行更详细的开展与系统功能划分算法部分庞广龙已经完成在时序预测中对于传统方法中的ARIMA学习,并且对于深度学习预测的收盘价原创 2021-07-04 22:12:24 · 96 阅读 · 0 评论 -
项目实训(二) 2021.6.30
在经过对于项目的研究以及对于具体答辩日期的思考之后,作为项目经理,对于成员的具体任务分工以及保底进度安排进行了更详细的分工。对于队员的安排如下,并且到时候会进行监督。算法部分任务分配李杉负责部分即结合相似股票进行预测(股票相似性判断),完成对于上证50支股票的初步分类,并且在此过程中明确对股票进行分段的依据,给出股票数据去噪的原理以及方法,并说明为什么是噪声数据。在距离计算方法上选择出适合的计算方法并给出依据,并且依据计算得到的距离给出相似股票的判断标准。给出股票异常点检测使用的方法依据,完成相关部分原创 2021-07-04 21:29:54 · 121 阅读 · 0 评论 -
项目实训(一)
项目实训(一) 我们暑期项目实训选择的是李雪梅老师的基于金融大数据的特征提取与趋势预测系统,经过小组分组后,我们选择的方向是 1.将股票视为时序数据,采用时序方法进行股票趋势预测 2.结合相似股票进行预测(股票相似性判断) 经过小组内初步分工后五个人目前分组为: 负责算法模块的实现与改进--庞广龙 李杉 负责协调成员工作,撰写文档、代码管理,系统测试,与老师沟通--张伟 前端数据可视化展示--姜昕彤 后端接口--张迎奥...原创 2021-06-30 09:35:00 · 152 阅读 · 0 评论