[LeetCode] 72. Edit Distance 编辑距离 @python

Description


Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.

You have the following 3 operations permitted on a word:

  • Insert a character

  • Delete a character

  • Replace a character

给定两个单词 word1word2,计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation: 
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')

Example 1:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation: 
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')

Solution


典型的动态规划问题。

首先定义状态矩阵,dp[m][n],其中mword1的长度+1nword2的长度+1,为什么+1?因为要考虑如果word1word2为空的情况,后面可以看到。

定义dp[i][j]word1中前 i 个字符组成的串,与word2中前j个字符组成的串的编辑距离。

插入操作:在word1的前 i 个字符后插入一个字符,使得插入的字符等于新加入的word2[j]。这里要考虑清楚,插入操作对于原word1字符来说,i是没有前进的,而对于word2来说是前进了一位然后两个字符串才相等的。所以此时是dp[i][j]=dp[i][j-1]+1

删除操作:在word1的第 i1 个字符后删除一个字符,使得删除后的字符串word[:i-1]word2[:j]相同。这里要考虑清楚,删除操作对于原word2字符来说, j1 是没有前进的,而对于word1来说是删除了一位然后两个字符串才相等的。所以此时是dp[i][j]=dp[i-1][j]+(0 or 1)

ifi==0andj==0,dp[i][j]=0(1)

ifi==0andj>0,dp[i][j]=j(2)

ifi>0andj==0,dp[i][j]=i(3)

if0<imand0<jn,dp[i][j]=min(dp[i][j1]+1,dp[i1][j]+1,dp[i1][j1]+(0or1))(4)


#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Apr 27 16:48:29 2018

@author: saul
"""

class Solution:

    def minDistance(self, word1, word2):
        m=len(word1)+1; n=len(word2)+1
        dp = [[0 for i in range(n)] for j in range(m)]

        for i in range(n):
            dp[0][i]=i
        for i in range(m):
            dp[i][0]=i
        for i in range(1,m):
            for j in range(1,n):
                if word1[i-1] == word2[j-1]:
                    dp[i][j] = dp[i-1][j-1]
                else:
                    dp[i][j] = min(dp[i][j-1], dp[i-1][j], dp[i-1][j-1]) + 1

        return dp[m-1][n-1]

word1 = "intention"
word2 = "execution"
test = Solution()
print(test.minDistance(word1, word2))
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值