Day17.平衡二叉树、二叉树的所有路径
0110.平衡二叉树
思路:分别获取左右子树的高度,然后判断左右子树的高度差是否大于1,
如果大于1,说明以当前节点为根节点的树,不是平衡二叉树,直接返回-1,尽快结束比较。
如果小于等于1,说明当前子树是平衡二叉树,返回子树高度大的值+1。
class Solution {
public:
bool isBalanced(TreeNode* root)
{
int h = getHeight(root);
return h != -1;
}
int getHeight(TreeNode* node)
{
// 如果当前节点为空,高度为0
if (node == nullptr) {
return 0;
}
// 获取左子树高度
int lh = getHeight(node->left);
// 如果左子树高度返回-1,说明左子树不是平衡二叉树
// 直接返回,没有再继续遍历的必要了
if (lh == -1) {
return -1;
}
// 右子树与左子树同理
int rh = getHeight(node->right);
if (rh == -1) {
return -1;
}
// 子树不是平衡二叉树
if (abs(lh - rh) > 1) {
return -1;
}
// 子树是平衡二叉树,返回高度值大的+1
return max(lh, rh) + 1;
}
};
0257.二叉树的所有路径
思路:使用先序遍历,回溯法,进入递归的时候,将当前节点加入路径。
如果当前节点是叶子节点,那么输出,返回。
如果有左右子树,递归处理左右子树,因为进入递归会加入对应节点到路径,所以在离开递归时需要将节点移出路径。
class Solution {
public:
vector<string> binaryTreePaths(TreeNode* root)
{
vector<int> onePath;
vector<string> res;
getPath(root, onePath, res);
return res;
}
void getPath(TreeNode* node, vector<int>& onePath, vector<string>& res)
{
// node为空,无效节点
if (node == nullptr) {
return;
}
// 先将当前节点加入路径
onePath.push_back(node->val);
// 如果是叶子节点,一个路径已经完毕,可以输出
if (node->left == nullptr && node->right == nullptr) {
res.push_back(pathToString(onePath));
return;
}
if (node->left) {
// 遍历左子树
getPath(node->left, onePath, res);
// 由于节点是在递归内部加入的,所以退出递归的时候,要回溯
onePath.pop_back();
}
if (node->right) {
getPath(node->right, onePath, res);
onePath.pop_back();
}
}
string pathToString(const vector<int>& path)
{
if (path.empty()) {
return string();
}
string res = to_string(path[0]);
for (size_t i = 1; i < path.size(); ++i) {
res += "->";
res += to_string(path[i]);
}
return res;
}
};
0404.左叶子之和
思路:总体递归为后序,只有在知道左右子树的左叶子和后,再相加,当前子树的目标结果。
不过遍历寻找的是左叶子节点的父节点,这样才能确定要不要返回叶子节点的值。
如果当前节点是左叶子节点的父节点,那么左子树的左叶子和就是其值,此处不能返回。
如果不是左叶子的父节点,那么直接递归左子树。
右子树只需直接递归。
class Solution {
public:
int sumOfLeftLeaves(TreeNode* root)
{
return getLeftSum(root);
}
int getLeftSum(TreeNode* node)
{
// 空节点,左叶子节点的和为0
if (node == nullptr) {
return 0;
}
if (node->left == nullptr && node->right == nullptr) {
// 如果当前节点是叶子节点,但并不能确定是不是左叶子节点
// 返回0
return 0;
}
TreeNode* lc = node->left;
int sumLeft = 0;
if (lc != nullptr && lc->left == nullptr && lc->right == nullptr) {
// 如果当前节点是左叶子节点的父节点
// 那么左叶子节点的和就是左节点的值
sumLeft = lc->val;
} else {
sumLeft = getLeftSum(node->left);
}
int sumRight = getLeftSum(node->right);
return sumLeft + sumRight;
}
};