Day17.平衡二叉树、二叉树的所有路径

这篇博客探讨了两种二叉树问题:0110.平衡二叉树和0257.二叉树的所有路径。平衡二叉树的判断通过比较左右子树高度差不超过1来实现;二叉树的所有路径则采用先序遍历和回溯法,输出从根节点到叶子节点的所有路径。此外,还介绍了0404.左叶子之和问题,通过后序遍历找到左叶子节点并累加其值。
摘要由CSDN通过智能技术生成

Day17.平衡二叉树、二叉树的所有路径

0110.平衡二叉树

0110.平衡二叉树

思路:分别获取左右子树的高度,然后判断左右子树的高度差是否大于1,
如果大于1,说明以当前节点为根节点的树,不是平衡二叉树,直接返回-1,尽快结束比较。
如果小于等于1,说明当前子树是平衡二叉树,返回子树高度大的值+1。

class Solution {
public:
    bool isBalanced(TreeNode* root)
    {
        int h = getHeight(root);
        return h != -1;
    }
    int getHeight(TreeNode* node)
    {
        // 如果当前节点为空,高度为0
        if (node == nullptr) {
            return 0;
        }
        // 获取左子树高度
        int lh = getHeight(node->left);
        // 如果左子树高度返回-1,说明左子树不是平衡二叉树
        // 直接返回,没有再继续遍历的必要了
        if (lh == -1) {
            return -1;
        }
        // 右子树与左子树同理
        int rh = getHeight(node->right);
        if (rh == -1) {
            return -1;
        }
        // 子树不是平衡二叉树
        if (abs(lh - rh) > 1) {
            return -1;
        }
        // 子树是平衡二叉树,返回高度值大的+1
        return max(lh, rh) + 1;
    }
};

0257.二叉树的所有路径

0257.二叉树的所有路径

思路:使用先序遍历,回溯法,进入递归的时候,将当前节点加入路径。
如果当前节点是叶子节点,那么输出,返回。
如果有左右子树,递归处理左右子树,因为进入递归会加入对应节点到路径,所以在离开递归时需要将节点移出路径。

class Solution {
public:
    vector<string> binaryTreePaths(TreeNode* root)
    {
        vector<int> onePath;
        vector<string> res;
        getPath(root, onePath, res);
        return res;
    }
    void getPath(TreeNode* node, vector<int>& onePath, vector<string>& res)
    {
        // node为空,无效节点
        if (node == nullptr) {
            return;
        }
        // 先将当前节点加入路径
        onePath.push_back(node->val);
        // 如果是叶子节点,一个路径已经完毕,可以输出
        if (node->left == nullptr && node->right == nullptr) {
            res.push_back(pathToString(onePath));
            return;
        }

        if (node->left) {
            // 遍历左子树
            getPath(node->left, onePath, res);
            // 由于节点是在递归内部加入的,所以退出递归的时候,要回溯
            onePath.pop_back();
        }
        if (node->right) {
            getPath(node->right, onePath, res);
            onePath.pop_back();
        }
    }
    string pathToString(const vector<int>& path)
    {
        if (path.empty()) {
            return string();
        }
        string res = to_string(path[0]);
        for (size_t i = 1; i < path.size(); ++i) {
            res += "->";
            res += to_string(path[i]);
        }
        return res;
    }
};

0404.左叶子之和

0404.左叶子之和

思路:总体递归为后序,只有在知道左右子树的左叶子和后,再相加,当前子树的目标结果。
不过遍历寻找的是左叶子节点的父节点,这样才能确定要不要返回叶子节点的值。
如果当前节点是左叶子节点的父节点,那么左子树的左叶子和就是其值,此处不能返回
如果不是左叶子的父节点,那么直接递归左子树。
右子树只需直接递归。

class Solution {
public:
    int sumOfLeftLeaves(TreeNode* root)
    {
        return getLeftSum(root);
    }
    int getLeftSum(TreeNode* node)
    {
        // 空节点,左叶子节点的和为0
        if (node == nullptr) {
            return 0;
        }
        if (node->left == nullptr && node->right == nullptr) {
            // 如果当前节点是叶子节点,但并不能确定是不是左叶子节点
            // 返回0
            return 0;
        }
        TreeNode* lc = node->left;
        int sumLeft = 0;
        if (lc != nullptr && lc->left == nullptr && lc->right == nullptr) {
            // 如果当前节点是左叶子节点的父节点
            // 那么左叶子节点的和就是左节点的值
            sumLeft = lc->val;
        } else {
            sumLeft = getLeftSum(node->left);
        }

        int sumRight = getLeftSum(node->right);

        return sumLeft + sumRight;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值